- 相关推荐
关于圆的面积教案汇总九篇
作为一名无私奉献的老师,往往需要进行教案编写工作,借助教案可以有效提升自己的教学能力。那么你有了解过教案吗?下面是小编整理的圆的面积教案9篇,欢迎大家借鉴与参考,希望对大家有所帮助。
圆的面积教案 篇1
教学内容:六年制小学数学教科书第十一册第一单元《圆的面积》中的第一节课,数学 - 圆的面积(一)。
教学目的:
1.通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。
2.能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。
教学重点:理解和掌握圆面积的计算公式的推导过程
教学难点:圆面积计算公式的推导
教学过程:
一 、创设情境,提出问题
( 课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题)
生:1羊走一圈有多长?2羊最多能吃到多少草?3羊能吃到草的最大面积是多少?
二、引导探究,构建模型
A:启发猜想
师:羊吃到草的最大面积最大是圆形:1、这个圆的面积有多大猜猜看;2、试想圆的面积和哪些条件有关?3、怎样推导圆的面积公式?(生试说)
B:分组实验,发现模型
学生分小组将平均分成16等分、32等分的圆放在桌上自由拼摆,拼成以前学过的平面图形摆好后想一想:1、你摆的是什么图形?2、你摆的图形与圆的.面积有什么关系?3、图形各部分相当于圆的什么?4、你如何推导出圆的面积?
请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况,小学数学教案《数学 - 圆的面积(一)》。
三、 应用知识,拓展思维
1师:要求圆的面积必须知道什么?
2 运用公式计算面积
A完成羊吃草的面积
B完成课后“做一做”
C一个圆的直径是10厘米,它的面积是多少平方厘米?
D找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)
测量物直径(厘米)半径(厘米)面积(平方厘米)
3应用知识解决身边的实际问题(知识应用)
下面是一个体育场的平面图,请你算一算跑道的周长是多少米?长方形体育场的占地面积是多少平方米?学校要请师傅给体育场铺草皮,已知每平方米的草皮是2.4元,学校一共要付多少钱才能完成?
四 归纳总结,完善认知
今天学了什么,这些知识我们是用什么方法学来的,你懂得了什么?
圆的面积教案 篇2
教学内容:
苏教国标版五年级下册103-105页及练一练和练习十九1-3题。
教材分析:
本课时内容是在学生已掌握了圆的基本特征和圆的周长公式的基础上,引导学生探索并掌握圆的面积公式。通过3个例题教学,采用两种不同的的策略,推导出圆的面积,让学生充分感受到圆的面积公式推导过程的合理性。
教学时,一要重点引导学生用数方格的方法计算圆面积及对相关数据进行分析和比较的过程中,发现圆的面积和以它的半径为边长的正方形面积之间的近似关系;二要把握两个关键环节:一是圆可以转化成过去所学过的什么图形;二是转化成的这个图形与原来的圆有什么联系。最后通过应用实践让学生运用知识解决实际问题的成功体验,增强学生学习数学的信心。
学情分析:
1、学生已有知识基础
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。
2、对后继学习的作用
圆面积的计算是今后学习圆柱、圆锥等内容的重要基础。
教学目标:
1、知识与技能:
(1)理解圆的面积的含义。
(2)经历圆的面积公式的推导过程,理解和掌握圆的面积公式。
(3)培养学生分析、综合、抽象、概括的能力和解决简单实际问题的能力。
2、过程与方法:
经历圆的面积公式的推导过程,体验实验操作、逻辑推理的学习方法。
3、情感与态度:
感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识,培养学生学习数学的兴趣。
教学重点:正确掌握圆面积的计算公式。
教学难点:圆面积计算公式的推导过程。
教学准备:
1.CAI课件;
2.把圆16等分、32等分和64等分的硬纸板若干个;
教学设计:
一、创设情境,提出问题。
投影出示草坪喷水插图
师:请大家观察这幅插图,说说从图中你能发现数学知识吗?
学生观察、讨论并交流:
生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。
生2:这个圆形的半径就是喷头喷水的距离,也就是5米;周长就是喷水所走过的路线;
生3:这个圆形的中心就是喷头所在的地方。
师:请大家说说这个圆形的面积指的是哪部分呢?
生4:被喷到水的草坪大小就是这个圆形的面积。
师:今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)
二、自主探究,合作交流:
1、课件先出示一个正方形,再以正方形的一个顶点为圆心,边长为半径画一个圆,请学生观察:正方形的边长与圆的什么有关系?如果半径是r,正方形的`面积是多少?
板书:正方形的边长=圆的半径r
正方形的面积=r2
2、猜想:圆的面积是正方形面积的多少倍?你是怎样想的?
3、教学例7
⑴谈话:刚才我们猜想圆的面积是正方形面积的3倍多,下面我们用数方格的方法来研究。
⑵课件出示例7第一幅图表,请同学们按照图表的要求数一数,算一算,把表格填完整,再在小组里交流。
⑶小组汇报(实物投影展示学生填写的表格)
⑷刚才我们通过一个圆验证了我们的猜想圆的面积大约是正方形面积的3倍多一些,而一个圆还不足以说明问题,我们再找两个圆用同样的方法验证。课件出示例7的第二幅图表,小组合作完成表格。
⑸小组汇报交流
⑹谈话:通过猜想、验证,我们都认为圆的面积是正方形面积的3倍多一些,我们知道正方形的边长等于圆的半径r,正方形的面积等于r2,那么圆的面积与它的半径有什么关系呢?
板书:S=r2×3倍多
[设计意图]
让学生仔细观察正方形和圆的关系后大胆猜想圆的面积是正方形的多少倍,接着从学生熟悉的“数方格”初步验证猜想,为进一步探索圆的面积公式作准备,获得的结论与例8推导出来的公式互相印证,能使学生充分感受圆面积公式推导过程的合理性,加深对有关圆形转化方法的体会。
三、动手操作,探索新知
1.回忆平行四边形、三角形、梯形面积计算公式推导过程。
(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?
(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?
(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?
2.推导圆面积的计算公式。
(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?
(2)学生小组讨论。
看拼成的长方形与圆有什么联系?
学生汇报讨论结果。
(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)
(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?
生边答师边演示课件。
生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径
S=πr×r
S=πr2师小结公式S=πr2,让学生小组内说说圆的面积是怎样推导出来的?
(5)读公式并理解记忆。
(6)要求圆的面积必须知道什么?(半径)
四、联系实际,解决问题:
1教学例9
(1)课件出示例9;
(2)说出已知条件和问题;
(3)学生自己试做;
(4)讲评,注意公式、单位使用是否正确。
2师:“老师的家中新买了一张圆桌,你们想看吗?(教师用电脑显示图片)为了保护好桌面,我想为桌面配一块和桌面一样大的玻璃,但不知该画一块多大的玻璃?(电脑中标示出桌面直径)。
五、全课总结,课后延伸:
1、今天这节课你学到了什么?
2、圆面积的计算方法,我们是怎样探索出来的?
3、小结:这节课我们通过猜想、动手操作把圆转化成近似的长方形来验证猜想,这是一种重要的数学思想方法,希望大家在今后的学习中大胆猜想,勇于探索,解决生活中的数学问题。
六、布置作业
1.第107页的第1-3题。
2.找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)
测量物直径(厘米)半径(厘米)面积(平方厘米)
七、板书设计:
圆的面积
S=r2×3倍多
长方形的面积=长×宽
圆的面积=周长的一半×半径
S=πr×r
S=πr2
教学反思
本课时从生活中喷水头浇灌农田这一生活场景引入,使学生理解了推导圆面积公式的必要性,激发了学生的求知欲望,调动了学生的积极性,使全体学生积极参与到数学学习活动中来。在强烈的求知欲望驱使下,学生凭借已有的生活经验和知识经验,发挥自己的想象,从估计到公式的推导;从数方格到剪拼成学过的平面图形。在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时遵循学生的认识规律,从学生的生活经验和已有的知识出发,重视学生获取知识的思维过程,。重点引导学生将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,发展学生的空间观念,从而正确掌握圆面积的计算公式。
圆的面积教案 篇3
【第一课时】 圆的面积
一、 教学目标
1.知识与技能
理解圆的面积的概念,理解和掌握圆面积的计算公式,并能正确计算圆的面积,解答有关的实际问题。
2.过程与方法
引导学生利用已有的知识,通过猜想、操作、验证、归纳等活动,经历圆面积计算公式的推导过程,培养学生观察、操作、分析、概括的能力,发展空间观念,渗透转化、极限等数学思想方法。
3.情感态度与价值观
通过自主探究圆面积转化的过程,培养学生大胆创新,勇于尝试,克服困难的精神,使学生体验成功的乐趣。
二、教学重点
正确计算圆的面积。
三、教学难点
圆面积公式的推导。
四、教学具准备
课件、学具。
五、教学过程
(一)情境导入
1.叙述:俗话说的好:“民以食为天”。餐桌是家家户户必不可少的。这不,小明家就新购置了一张圆形的餐桌。为了起到保护作用,妈妈给了他一个任务,让他去配一个与桌面相同大小的玻璃桌面。这可把小明难住了,这玻璃桌面该多大呢?【可使用圆的图片2】 同学们,要想帮助小明解决他的问题我们需要用到什么知识呢?
今天这节课我们就来学习圆面积的求法。(板书题目:圆的面积)
2.看到今天的课题,你都想知道什么?
3.什么是圆的面积?在哪?摸摸看。
(学生摸手中圆形纸片,并用手指出圆的面积)
过渡语:圆的面积怎样求呢?在这里,我们不妨先回忆一下其它图形面积的推导过程。
(二)复习旧知识
1.你还记得我们已经学过了哪些图形的面积求法吗?
(生:长方形、正方形、平行四边形、三角形、梯形)
2.回忆一下,平行四边形面积计算公式我们是怎样推导出来的?(课件演示)
3.问:其它图形呢?(学生简要叙述其他面积推导过程)
4.小结:这样看来,当我们遇到新问题时,往往可以借助已有的知识进行解决。
(三)学习新课
1.请你猜猜看,圆的面积公式应该怎么推导出来?
(生:转化成已知的图形进行推导)
2.怎么转化?想想办法。任意的分成几份行吗?
(生:沿圆的直径将圆平均分成若干份)
3.下面请大家动手实际拼摆一下,看看自己的想法能否实现。请看活动要求:
(1)以组为单位,先摆图形。
(2)看看拼出的图形的底和高与圆的关系,并推导圆的面积公式。
(3)有问题及时记录,以便讨论。
(学生动手拼摆并贴在白纸上)
4.你们遇到什么问题了吗?
(生:边不是直的,是弯的)。
5.谁能帮助他解决这个问题?
(学生谈自己的想法)
6.是的,边不是直的这可怎么办呢?我们已拼成长方形为例,当我们把圆平均分成四份,拼成的图形是这样的;把圆平均分成8份,拼成的图形是这样的;把圆平均分成16份,拼成的图形是这样的;把圆平均分成32份;拼成的图形是这样的。(课件展示)
【可使用圆的图片27】
7.同学们请你对比大屏幕上拼得的这几幅图,你有什么想法吗?
(学生谈自己的想法)
8.看来,把圆平均分的份数越多,曲线越接近于线段,拼得的图形越接近我们所学过的图形。当分成无数份时,曲线也就变成了直线。这个问题解决了么?下面继续小组合作,推导圆面积计算公式。
(学生谈自己的想法)
9.汇报不同推导方法:
转化成长方形的:
长方形的面积=a × b 圆的面积=c×r 2
=π r × r
=π r 2
转化成平行四边形的:
平行四边形的面积= a × h
圆的面积= c × r 2
=π r × r
=π r 2
转化成三角形的:
三角形的面积= 1× a × h 2
圆的面积= 1c×4r 24
c× r 2 =
=π r 2
转化成梯形的: 梯形面积=1×(a+b)× h 2
15c3c×(+)×2r 21616
1c××2r 22
c× r 2圆形面积= ==
=π r 2
10.观察一下,这些推导过程有什么相同的地方?
(生:都是将圆转化成已知图形去推导的)
11.总结:由此可知,我们在推导圆面积计算公式的时候可以用全部的小扇形推导,也可以用一个小扇形推导,当然也可以用部分小扇形推导。
现在我们圆面积的计算公式已经推导出来了,小明的问题可以解决了我吗?要想解决它的问题我们需要知道哪些条件?(圆的直径、半径或周长)
(四)巩固练习
1.求圆的面积(单位:厘米)
r=3 答案:s=28.26(平方厘米)
d=20答案:s=314(平方厘米)
c=125.6答案:s=1256(平方厘米)
2.小明测量出桌面的直径是2米,你能算出玻璃桌面的面积吗?
答案:3.14×22 =12.56(平方米)
3.判断
(1)直径是2厘米的圆,它的面积是12.56平方厘米。()
(2)两个圆的周长相等,面积也一定相等。()
(3)圆的半径越大,圆所占的面积也越大。()
(4)圆的半径扩大3倍,它的面积扩大6倍。 ()
4.听故事解题:
巴依老爷买来一群羊。
巴依老爷说:“阿凡提,快把新买的羊赶倒圈里去”。
阿凡提说:“老爷,这个长方形羊圈太小了!”
巴依老爷:“什么,太小了?你不把羊全部赶进去,哼哼,你的工钱就别拿了!要不,你自己花钱买些材料,把羊圈围大些。”
阿凡提想:“该怎么办呢?怎么样才能既不花钱另买材料,又能够让羊圈的面积变大呢?”
同样聪明的`同学们,你们能帮阿凡提想个办法吗?并且请你说明你的理由。
(五)小结
今天这节课你有什么收获?
【第二课时】 圆环面积
一、 教学目标
1.知识与技能
掌握圆环面积的计算方法,能灵活解决生活中相关的简单实际问题。
2.过程与方法
在经历画圆环、剪圆环的活动过程中,初步感受圆环的特点、形成过程,进而探索出圆环面积计算的方法。培养学生观察、动手操作、比较、分析、概括等能力。
3.情感态度与价值观
进一步体验图形与生活的联系,感受平面图形的学习价值,提高学习数学的兴趣。
二、教学重点
圆环的特征、圆环面积公式的推导及运用。
三、教学难点
灵活运用圆环面积的计算方法解决相关的简单实际问题。
四、教学具准备
课件、学具。
五、教学过程
(一)学习方法回顾、铺垫回忆一下
我们在推导圆面积计算公式时用到了什么学习方法?
(生:把圆形转化成学过的平面图形,利用旧知识推导出新知识。)
这也就是我们常说的遇到不会的想会的,把新知识转化成了旧知识解决。 板书:不会
想 会
新 旧
这节课我们继续用这种方法研究新问题。
(二)创设实际应用的问题情境
1.同学们你们喜欢看动画片吗?今天老师带来了几张光盘,看,这是什么?
(1)动画光盘(2)歌曲光盘
(3)空白封面光盘
2.想知道这张光盘的内容吗?我们一起来看看。
欣赏学生的校园活动照片。
这些照片见证了我们同学6年来快乐的校园生活,非常珍贵。想不想把它珍藏起来?老师打算把这些照片刻成光盘,等你们毕业时当毕业礼物送给你们好吗?
3.现在这张光盘的封面还空着呢,你想不想亲自为它设计一个有纪念意义的封面呢?要进行设计,咱们先了解一下哪部分是可以进行封面设计的。
4.小组内摸一摸准备的光盘实物,再让学生实投指一指。
师课件演示(由实物抽象出线条图形、涂色图形)【可使用圆动画14】
5.这个图形有什么特点?
生:由两个圆组成,它们的圆心是相同的。(课件点击出圆心)
6.师说明:这样两个同心圆所夹的部分我们把它叫做圆环。
板书课题:圆环
外面的圆我们叫它外圆,里面的小圆我们叫它内圆。两个圆周之间的距离我们叫做环宽。
圆的面积教案 篇4
教学目标:
1.使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。
2.使学生进一步体会转化方法的价值,培养运用已学知识解决新问题的能力,发展空间观念和初步的推理能力。
3体会数学来自于生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。
教学重点:
探索并掌握圆的面积公式,能正确计算圆的面积。
教学难点:
理解圆的面积公式的推导过程。
教学准备:
圆的面积公式的推导图。
一、回顾旧知,引入新知
1.师:四年级时,我们学习了求长方形和正方形的面积的方法,谁来说一说它们的'面积的计算方法。
学生回答,教师予以肯定。
2.提问:圆的周长怎么计算?已知圆的周长,如何计算它的直径或半径?
3.引入:我们已经研究了圆的周长和直径、半径的计算方法,今天这节课我们来研究圆的面积是如何计算的。
(板书:圆的面积)
设计意图 通过复习,促进学生对周长和已知周长求直径或半径的理解,唤起学生求长方形和正方形面积的经验,为新课的学习做好准备。
二、合作交流,探究新知
1.教学例7。
(l)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。
(2)圆的面积和半径或直径究竟有着怎样的关系呢?我们可以做一个实验。
(3)出示例7第一幅图。思考:图中正方形的边长与圆的半径有什么关系?图中正方形的面积和圆的半径有什么关系?
(4)学生独立完成填空。
(5)猜测:圆的面积大约是正方形面积的几倍?
学生回笞后,明确:圆的面积小于正方形面积的4倍,有可能是3倍多一些。
(6)出示例7后两幅图,按照同样的方法进行计算并填表。
正方形的面积
圆的半径
圆的面积
圆面积大约是正方形面积的几倍
(精确到十分位)
2.交流归纳:观察上面的表格,你有什么发现?
通过交流,明确
圆的面积教案 篇5
学材分析
教学重点:
面积计算公式的正确运用。
教学难点:
面积公式的推导过程。
学情分析
学生对圆面积公式的推导过程理解有一定的难度。
学习目标
1.理解圆面积计算公式的推导过程,掌握圆面积的计算公式。
2.会用圆面积的计算公式,正确计算圆的面积。
导学策略
导练法、迁移法、例证法
教学准备
圆的面积模型、圆规、投影仪、投影片
教师活动
学生活动
一.引入
1.什么叫做圆面积?
2.出示大小略有不同的两个圆,让学生比较哪个圆的面积大?大多少?(学生口答后把两圆重叠,比较大小。)相差多少呢?
3.引出课题。
二.推导
1.问:小正方形面积怎样计算?(半径半径)圆面积与小正方形面积的3倍谁大谁小?圆面积与小正方形面积的4倍呢?2倍呢?
2.师生共同操作:拿出一张正方形纸,按要求对折4次(注意第4次折的折法,是按角对分地折),然后拿尺量出一等腰三角形剪一刀,展开,得到一个近似于圆的纸片。
3.教师操作:拿一张正方形纸,对折5次,剪一刀展开。与前一次剪的作比较,使学生知道,随着折的次数不断增加,剪下的图形也就越接近圆。
4.分析推导。师生共同拿出剪好的图形分析:这个图形等分成若干块,每一块都是什么形状?(等腰三角形)这个图形的面积怎么求?随着折的次数不断增加,剪下的图形的面积也就越接近什么图形的面积?
板书:图形面积=等腰三角形面积n=底高2n=Cr2n
=2rn
圆的面积=r2
边板书边提问:等腰三角形的底是多少?(C)等腰三角形的高相当于圆的什么?(半径r)
5.在上面推导的'基础上,让学生分4人小组动手把准备的圆分成相等的16个小扇形,再拼成其他图形,推导出圆面积公式。教师巡视,取学生拼成的各式各样的图形,贴在黑板上,选其中两个进行分析。
三.巩固
试一试。
四.总结
五.作业
学生口答
师生共同操作
师生共同操作
教学反思
已经是第2次教毕业班了记得第1次教的时候,还是幼儿园的院长一早每天都要过去一下,课前准备就不够充分,上课就照本宣科。而现在教这个知识的时候,不仅教具演示而且学生实际操作,所以教学效果就好多了,可以说连中下生都能灵活应用这个知识。
圆的面积教案 篇6
教材分析
教材首先通过圆形草坪的实际情景提出圆面积的概念,使学生在旧知识的基础上理解“圆的面积就是它所占平面的大小”。其次教材直接提出问题:能不能把圆转化成已学过的图形来计算面积?由于让学生完全自主的探索如何把圆转化成长方形是有很大难度,但是教材给出了提示,让学生利用学具进行操作,在此基础上让学生发现院的面积与拼成的长方形面积的关系,圆的周长,半径和长方形的长,宽的关系并推导出圆的面积计算公式,最后教材安排了例题,应用面积计算公式解决实际问题,已知直径,先求出半径,再求出面积。
学情分析:
1. 充分利用已学过的数学知识和教学思想方法进行教学。如,教学圆的`面积的含义时,可以先让学生回忆已学过的图形面积的含义,并进行分析对比,使学生认识到它们的共同点都是指图形所占平面的大小。
2. 要充分利用直观教具,让学生在动手操作中自主探索,例如,教学圆面积计算公式的推导过程时,可以先让学生把教材后面所附的圆形做成学具,在教师指导下,可以通过小组合作的方式,自行决定等分成多少份,自由的分一分,剪一剪,拼一拼。最后把拼成的加以比较,使学生看到。分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。
教学目标
1.了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。
2.能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
3.在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
教学重点和难点
教学重点: 圆的面积公式的推导及应用公式计算
教学难点:探究圆的面积公式的推导过程
圆的面积教案 篇7
教学内容:课本例3,第115页练习二十七的第1~5题。
教学目的:通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。
重点:圆面积计算公式。
难点:圆面积计算公式的推导。
教具、学具:圆的面积演示教具及平行四边形拼割教具;厚纸做的圆及剪刀与胶布。
教学过程():
一、复习。
1.口算:
2.已知圆的半径是2.5分米,它的周长是多少?
3.一个长方形的长是6.2米,宽是4米,它的面积是多少?
4.说出平行四边形的面积公式是怎样推导出来的?
我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。(板书课题:圆的.面积)
二、新授。
1.圆的面积的含义。
问:面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)
以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)
2.圆的面积公式的推导。
怎样求圆的面积呢?如果用面积单位直接去度量显然是行不通的。但我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形——长方形。怎样分割呢?教师拿出圆的面积教具进行演示:
先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)
再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。
向学生说明:如果分的等份越多所拼的图形就越接近长方形。
教师边提问边完成圆面积公式的推导:
拼成的图形近似于什么图形?
原来圆的面积与这个长方形的面积是否相等?
长方形的长相当于圆的哪部分的长?
长方形的宽是圆的哪部分?
长方形的面积=长×宽
圆的面积 = ×
= ×
= ×
=
用S表示圆的面积,那么圆的面积可以写成:
3.圆面积公式的应用。
出示例1:一个圆的半径是4厘米。它的面积是多少平方厘米?
学生读题,问:要求圆的面积的条件是否具备?怎样列式?学生回答,教师板书:
=3.14×
=3.14×16
=50.24(平方厘米)
答:它的面积是50.24平方厘米。
三、巩固练习。
1.根据下面所给的条件,求圆的面积。
半径2分米。
直径10厘米。(先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)
2.练习二十七的第1~4题。
强调书写格式,运算顺序与单位名称。
总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式 计算。
四、作业。
练习二十七第5、6题。
圆的面积教案 篇8
教材分析:
初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。
学情分析:
学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。
教学目标:
1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。
2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。
3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实践和数学交流的能力,体验数学探究的乐趣和成功。
4、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察曲与直的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。
教学重点:
通过观察操作,推导出圆面积公式及其应用。
教学难点:
极限思想的渗透与圆面积公式的推导过程。
教学过程:备注:
活动一:创设情景,提出问题
1、课件出示羊吃草的动画:一个放羊娃将一只小山羊用一根绳子把它拴在木桩上。请问小山羊最多能吃到多大范围的草呢?
2、圆的面积--含义:圆所占平面的大小叫做圆的面积。
3、如果将绳子加长一点,又会出现什么情况?产生这种变化的原因是什么?这说明了什么?
活动二:猜想比较:
出示图
师:看了这两幅图形,你发现了什么?右图小正方形的面积是多少?左图大正方形的面积是多少?你能猜一猜圆的面积和大正方形面积有什么联系吗?
活动三:自主探究,验证猜想
1、引导转化:
师:回忆以前学过的平面图形,它们的.面积公式是什么?分别怎么推导出来的?
以上这些图形都是通过剪拼,转化成已学过的图形,再进行推导。那么圆是否也可以把它剪拼转化成为熟悉的平面图形呢?
2、动手操作:
(1)分小组动手操作,把圆剪拼转化成其他图形,看谁拼得好,拼出的图形多。
操作引导:A、剪--怎样剪?剪成几份?B、拼--怎样拼?拼成什么?
(2)展示交流并介绍,选出最合理的剪法。
(3)拼成后的近似长方形和标准长方形比较,你发现了什么?能不能把边再变得直一点?
想象一下,平均分成64份、128份、256份......会是什么情形?(课件演示)
(4)小结:平均分的份数越多,边越直,拼成的图形越接近于长方形。
3、自主推导
(1)小组合作,选择喜欢的1~2个图形,尝试推导公式。
(2)学生展示、介绍自己的推导过程
(3)教师板演圆面积的推导过程
4、情景延续:
(1)如果绳长为5米,计算圆的面积和周长。
(2)将绳子加长为原来的2倍,那么羊能吃到草的面积也是原来的2倍。对吗?
5、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,你们真了不起!那么,求圆的面积需要什么条件呢?(是否只有知道半径才能求圆的面积?)
活动四:实践运用,体验生活
1、量出自己带来的圆形物体的直径,并计算出面积。
2、社区公园有一个圆形水池(中有假山),请想办算出水面面积。
活动五:全课小结
通过本节课的学习你有哪些收获?
板书设计
圆的面积教案 篇9
教学内容:小学数学义务教育教材第十一册p129---p130
教学目的:
1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括力,发展学生的空间观念。
3、渗透转化的数学思想和极限思想。
教学重点:圆面积公式的推导。
教学难点:弄清圆与转化后的近似图形之间的关系。
学具:每四人小组一个彩色圆(教师分好8等分点)、两三个圆、固体胶、卡纸、剪刀。
教具:课件。
教学过程:
一、谈话揭题:
出示图:
你看到了什么?刚才同学们提到的圆的面积就是今天这节课我们要来研究的内容。(出示课题:圆的面积)那么圆的面积和什么有关?(半径、直径)
二、新课教学:
1、猜测:
现在请大家看,这儿有一张正方形的纸,(课件演示)用它剪一个最大的圆,(课件演示)如果圆的`半径用r来表示,你知道原来正方形的面积怎么求吗?(2rx2r)整理一下(板书:2rx2r=4r的平方)(按虚线)我们再来看看图,你明白了什么?这样看来,正方形的面积是r的平方的4倍,那么,现在请你猜猜看,圆的面积大概会是多少?
2、验证:
(1)现在我们都认为圆的面积是r的平方的三倍多一点,那么,圆的面积与r的平方到底有怎样的关系呢?你们准备用怎样的方法来研究它呢?下面请四人小组讨论一下,可以动用桌子上的学具。(教师巡视)
(2)反馈:(三分钟后,低到高)
a:你们为什么不动?你们又是怎么想的?(平均分成若干份,拼成我们学过的图形来研究)同意吗?
b:这儿有一个圆,我们把它平均分成四份,可以吗?那么怎么拼呢?(学生拼,投影演示)看看象什么图形?(平行四边形)象吗?我看不象。怎样使它象呢?(分的份数多一点)刚才我们拼的图形象平行四边形,当然,可能还能拼成别的图形。
c:刚才我们讨论研究出来的方法第一步是等分,第二步是想一想拼成什么图形,再拼一拼,第三步是推导。(板书:等分想、拼推导)当然,也可以用别的方法。(板书箭头)
(3)操作:
你们想试一试吗?现在请组长拿出信封,倒出里面的圆片,我们以四人小组为单位动动手。(小组讨论操作,师巡回指导:表扬拼出与别组不一样图形的小组,提示拼好后可以用胶水粘住。)
3、小组汇报:(举起把圆等分成8份、16份所拼成的长方形或平行四边形给学生看一看,再请平均分成16份拼成长方形或平行四边形的同学汇报)
(1)学生汇报。
(2)有没有疑问?
拼成的长方形是真正的长方形吗?为什么?(边是曲线)
如果把一个圆等分成32份,拼成的长方形会怎样呢?(课件演示)等分成64份,又会怎么样呢?(课件演示)如果等分的份数更多,又会怎样呢?你能得出什么结论?(圆等分的份数越多,拼成的图形越接近于长方形)
(3)板书:
那么长方形的面积是怎么求的?(板书)它的长相当于圆的什么?怎么用字母表示?宽呢?(课件演示:在长方形或平行四边形64等分图的下面出示r,右边出示r,同时板书)那么圆的面积=rxr=r的平方。
(4)还有补充吗?
小组汇报:平行四边形、三角形、梯形面积转化为圆的面积公式。(实物投影仪下显示,最后写成r的平方,14bd的平方)
4、小结:通过刚才我们四人小组的活动,大家有什么结论?(不管拼成什么图形,都能推导出圆的面积是r的平方)那么知道什么可以求出圆的面积?(半径、直径、周长)
三、巩固练习:
1、出示:课本p1302(1)(3)(课件演示)会吗?(草稿本上算,投影反馈)
2、现在来看这个图形(猜测题)如果r=5厘米,你能求什么?(圆面积、正方形的面积、剩下的纸的面积)请你草稿本上算一算。(投影反馈)或口答。
四、机动练习:
教师准备一些实物,分发给四人小组:你们能求出它们的面积吗?(反馈)还可以测什么数据算面积?
五、全课小结:
今天这节课给你印象最深刻的一点是什么?