等式的性质说课稿

时间:2022-11-21 16:58:25 说课稿 我要投稿
  • 相关推荐

等式的性质说课稿

  作为一名专为他人授业解惑的人民教师,常常要根据教学需要编写说课稿,说课稿可以帮助我们提高教学效果。那么写说课稿需要注意哪些问题呢?以下是小编收集整理的等式的性质说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

等式的性质说课稿

等式的性质说课稿1

  今天,我说课的题目是鲁教版义务课程标准实验教科书七年级下第十一章第二节《不等式的基本性质》,主要从以下几个方面进行说课:教材分析,教法分析 , 学法指导,教学过程设计,教学评价。

  一,教材分析

  本节课主要研究不等式的性质和简单应用。它是进一步学习一元一次不等式的基础。它与前面学过的等式性质有联系也有区别,为渗透类比,分类讨论的数学思想提供了很好的素材。这节课在整个教材中起承上启下的作用。它是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想。是初中数学教学的重点和难点,对进一步学习一次函数的性质及应用有着及其重大的作用。

  结合本节课的地位和作用,设计本节课的教学目标如下:

  1、知识目标:

  (1)探索并掌握不等式的基本性质,能解简单的不等式;

  (2)理解不等式与等式性质的联系与区别;

  2、能力目标:

  (1)通过不等式性质的探索,培养学生的观察,猜想,分析,归纳,概括的逻辑思维能力:

  (2)通过探索过程,渗透类比,分类讨论的数学思想;

  3、情感目标:

  (1)培养学生的钻研精神,同时加强同学间的合作与交流;

  (2)让学生获得亲自参与探索研究的情感体验,从而增强学习数学的热情,

  (3)通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操。

  结合本节课的教学目标,确定本节课的重点是不等式性质及简单应用。难点是不等式性质的探索过程及性质3的应用。

  为了突出重点,突破难点:采用实物投影仪展示学生不同层次的思维探索过程,化抽象为具体;用类比,对比的方法化生疏为熟悉,化零散为系统。

  二,教法分析,教学手段的选择:

  为了体现以学生为本的课堂教学理念,在教学过程中主要采用探索发现法和启发式教学法, 即采取观察猜测---直观验证---推理证明---得出性质。在知识的发生发展中渗透类比,分类讨论的数学思想,学生通过观察,类比,猜想,验证,应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性和系统性。 为了突破学生对不等式性质3,理解的困难,采取了类比作化抽象为具体的方法来设置教学。

  三、学法指导:

  由于七年级学生有比较强的好奇心,好胜心以及显示欲。同时经过一年初中数学的思维锻炼,已经初步具备了提出问题,分析问题和解决问题的能力,基于学生的以上心理特点及认知水平,所以采取动手实践,自主探索,合作交流的学习方法。这样可以使学生积极参与教学过程。在教学过程中展开思维,进一步培养学生提出问题,分析问题,解决问题的能力,进一步理解类比,分类讨论等数学思想。

  四,教学过程设计

  基于以上教材分析,紧紧围绕本节课的教学目标,从学生的认知水平出发进行如下的教学设计:

  五、教学过程

  1.创设情境,类比猜想

  提出问题:今年我比你大10 岁,5年后,我比你大还是比你小,大几岁,小几岁?

  2年前,我比你大还是比你小,大几岁,小几岁?

  类比等式的性质1,不等式有类似的性质吗?

  【设计意图】通过一些生活实例启发学生思考,猜想不等式的性质1

  2、举例说明,验证结论

  设计小活动:你说我验

  同桌合作,举几个例子,可以是数字例子,也可以是生活当中的例子。相互验证一下你猜想的是否正确

  【设计意图】通过这个活动旨在增强教学的有效性,一方面增强学生间的合作意识,另一方面增强学生思考的严谨性。活跃课堂气氛,掀起课堂的一个小高潮。

  学生总结,教师板书,以及注意引导学生理解"同一个整式"的含义。

  3、类比等式的性质2,使学生发现问题:不等式是否有类似的性质

  不等式的性质2,3是这一节的重点、难点,在这个知识点的处理上,完全放手给学生,让学生自己发现,不等号没变,在什么情况下不变?不等号发生了改变,在什么情况下发生了改变?让学生自己的思维发生碰撞,再套用乘以或除以一个数已经不能满足需要了,因此,必须分成正数和负数两种情况。这种分类不是老师硬塞给学生的,而是水到渠成的。让学生再举几例试试,发现有没有类似的结论。

  【教法说明】为了突破学生对不等式性质3理解的困难,根据学生的认知规律采取化抽象为具体的方法来设计教学过程。为了体现以学生为本的课堂教学理念,在教学过程中主要采用探索发现法和启发式教学法, 即观察猜测---直观验证---得出性质,突出时间、结果和体验学生有效学习的.三个重要指标,教学过程应该成为学生的一种愉悦的情绪生活和积极的情感体验。基于此,改变以往给学生画好框架,让学生跟着老师的思路走的教学模式,大胆放手给学生,从而培养学生的能力。这种方式能再次掀起小高潮。让学生各有所获,从不懂到懂,从少知到多知,从不会到会,从不能到能。学生通过观察,类比,猜想,验证,应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性和系统性。

  师生活动:由学生概括总结不等式的性质2,3,同时教师板书。

  4、例题讲解,探究新知

  例1 将下列不等式化成"x>a"或"x

  (1)x-5>-1

  (2)-2x>3

  解:(1)根据不等式的基本性质1,两边都加上5,得

  x>-1+5

  即 x>4

  (2)根据不等式的基本性质3,两边都除以-2,得

  X<-3/2

  【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与 或 对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范。

  【设计意图】应用性质精讲精练,对不等式进行变形,加强对不等式性质的理解,规范书写格式

  例2:对习题1进行适当的改编:已知a

  (1)a-3____b-3 根据不等式的性质1

  (2)6a____6b 根据不等式的性质2

  (3)-a_____-b 根据不等式的性质3

  (4)a-b____0

  教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励。

  注意问题:做此练习题时,应启发学生将所做习题与题中已知条件进行对比,例2(3)是根据不等式性质3,不等号方向应改变。这是学生做题时易出错误之处。

  【设计意图】连线改变以往简单说明理由的形式,增加趣味性,同样让学生明白言之要有理,推理要有依据,这样学生更容易接受。逐步培养学生的逻辑思维能力

  5、小试牛刀:断正误,正确的打"√",错误的打"×"

  ①∵ ∴ ( ) ②∵ ∴ ( )

  ③∵ ∴ ( ) ④若 ,则 ∴ , ( )

  学生活动:一名学生说出答案,其他学生判断正误。

  答案:①√ ②× ③√ ④×

  【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错

  6、拓展思维,培养能力

  比较2a与a的大小

  【设计意图】改变学生的思维定势:2a一定比a大,培养学生的分类讨论的思想。

  7、分层布置作业

  必做题:

  选做题:

等式的性质说课稿2

  一、教材分析:

  1、教材的地位和作用:《等式的性质》是人教版实验教科书七年级上册第二章第一小节的内容,本节是这一内容的第二课时。旨在为后继学习解方程提供理论依据,也为以后在代数几何中进行量与量之间的转换,代数式的恒等变形提供依据,更为以后学习不等式打下基础,同时也是对前一小节估算方法求方程的解一次推进,更是对小学学习等式的性质,解方程的一次变革。实现由具体的数向抽象的字母过渡,从而让学生体验用字母表示数的优越性。基于教材的安排及初一学生直观形象思维的特点,特确定如下教学重、难点:

  重点:等式的性质及运用等式性质解方程。

  难点:等式性质的导出过程。

  二、目标分析:

  新课标中要求,数学课堂要让学生体验到数学是一个充满着观察、实验、归纳、类比、猜测的探索过程,考虑到初一学生对这一内容并不陌生,难在从实验中总结出一般性规律。确定如下教学目标:

  1、认知目标:掌握等式的性质,会运用等式的性质解简单的一元一次方程。 综合、抽象能力,获取学习数学的方法。

  3、情感目标:通过群体间的交流与合作,培养学生积极愉悦地参与数学学习活动的意识和情感,敢于面对数学活动中的困难,获得成功的体验。体验解决问题中与他人合作的重要性。

  三、教法分析:

  为突出重点、突破难点,达到教学目标,我准备采用以下教学方法:

  1、实验观察,自主归纳法:

  2、自主探究,讨论交流法:

  3、自主学习,与讲授相结合法;

  四、过程分析:

  本节课我主要围绕三个什么来教学,即为什么学习等式的性质?等式的性质是什么?怎么运用等式的性质?。

  (一)关于为什么学习等式的性质?主要是在引入时以古希腊数学家丢番图墓志铭上的名题作为情境导入,当学生列出方程后,提出问题:你能用估算的方法求出方程的解吗?你要试验多少次才能找到方程的解?当学生感到用估算的方法难于求解时,引出学习等式的性质的必要性。 2、能力目标:通对观察、实验、探究、归纳、应用,培养学生观察、分析、

  这样设计从学生原有的知识出发,提出新问题,激发学生的求知欲望和动机。

  (二)关于等式的性质是什么?是我教学中的一个重要环节,主要是通过教师在多媒体上进行演示实验,让学生通过实验、观察、探究、讨论、交流归纳出等式中满足的规律,进而把规律用式子表示出来。

  实验按以下过程进行:

  1、实验前提出问题

  等式像平衡的天平,能否通过加减天平两边的重量,使天平继续保持平 衡?

  2、实验步骤如下:

  实验一:

  ①出示天平,让学生第一次观察天平是否平衡?

  ②放上两个同重量但不同种类的物体,让学生第二次观察天平是否平衡?若平衡——这时说明左边物体为a千克,右边物体重量为bkg,那么,两边物质重量相等,可用什么式子表示? a=b

  ③在天平左边加一个3kg物体,让学生第三次观察天平是否平衡?如果不平衡,该怎么变化?

  ④在天平右边加一个物体,但与第三次重量不同,让学生第四次观察天平是否平衡?如果不平衡?怎么变化?

  ⑤在天平右边换上一个3kg的物体,让学生第5次观察天平是否平衡?如果平衡,从实验中,你发现了什么?

  天平两边同时加上同重量的物体,天平仍然平衡?把平衡的`天平看成等式a=b,相当于在等式两边做什么变化?你能用式子表示吗?

  实验二:

  ①出示天平,两边各放同重量不同种类的物体,让学生观察天平是否平衡? ②拿走天平左边一个“△”,让学生观察天平是否平衡?若不平衡,怎么变化? ③拿走天平右边一个“□”让学生观察天平是否平衡?若不平衡,怎么变化? ④换回“□”、放上“△”让学生观察天平是否平衡?若不平衡,怎么变化? ⑤从实验中你发现了什么?

  天平两边同时减去同重量物体时,天平仍然平衡?

  把平衡的天平看成等式a=b.“△”形的重量为2kg,相当于等式两边做了什么变化?

  ⑥天平两边放上一物体xkg,观察天平是否平衡?

  ⑦天平两边放上一物体,(x+y)kg,观察天平是否平平衡?这里x、x+y都是些式子,说明等式还满足什么规律,你能把规律用式子表示吗?

  实验三:

  ①出示天平

  ②天平的左边由○○→○○○○,天平不平衡,右边怎么变化?

  ③天平左边由○○→○○○○○○,天平不平衡,右边怎么变化?

  从中你发现了什么?

  说明天平左右两边同时扩大相同的倍数,天平仍平衡,扩大多少倍,也可以看成什么运算?相当于在等式a=b的两边做了一个什么变化呢?

  ④天平左边○○○○○○→○○○,天平平衡吗?右边怎么变化?

  ⑤天平○○○○○○→○○,天平平衡吗?右边怎么变化?

  从中你发现了什么?

  天平左右两边重量同时缩小相同倍数时,天平仍平衡?缩小多少倍也可以看成什么运算?相当于在等式a=b的两边做了一个什么变化?

  引导学生说明等式性质2,并用式子表示?

  这样设计让学生通过观察、实验、探究、归纳、探索发现等式的性质,培养学生观察能力、抽象思维能力、综合运用能力,让学生经历产生知识的过程。

  (三)关于怎么应用性质,对书中例题只点拨,不讲解。特别是例题中的(3)强调一题多解。并在后面安排三个不同层次的练习,先简单应用,再逆用性质,最后解决数学家的岁数问题。

  这样设计,一方面是巩固本节的重点知识和易错点;另一方面是培养学生自主学习的方法,提高他们的思维能力。

  (四)关于小结:

  主要是让学生辨析两个性质的相同和不同点。

  五、几点思考:

  1、演示实验能否达到效果。会不会有同学在已知结论的情况下,直接用结论,而不是通过实验发现结论。

  2、等式是生活中的平衡状态,除了相等还有不相等,如果有学生问,就给学生作进一步的解释,为后面学习不等式的性质打下基础。

  3、习题中有ax=-3x,推出a=-3,可能有学生忽视x不等于零。

  4、实验后,学生可能无法用语言描述等式满足的规律。

  5、求数学家的年龄时,可能有同学不会合并,这时降低要求,能做的更好,不能做的,放到下节课再解决。

等式的性质说课稿3

  《不等式的基本性质》它是北师大版八年级下册第二章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:

  本节内容不等式的基本性质,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

  根据《新课程标准》的要求,教材的内容兼顾我班学生的特点,我制定了如下教学目标:

   知识与技能:

  1. 感受生活中存在的不等关系,了解不等式的意义。

  2. 掌握不等式的基本性质。

   过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。

   情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。

   教学重难点:

  重点:不等式概念及其基本性质

  难点:不等式基本性质3

   教法与学法:

  1. 教学理念: “ 人人学有用的数学”

  2. 教学方法:观察法、引导发现法、讨论法.

  3. 教学手段:多媒体应用教学

  4. 学法指导:尝试,猜想,归纳,总结

  根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。下面我将具体的教学过程阐述一下:

  一、复习导入新课

  上课开始,我首先带领学生学习本节课的教学目标,让学生明白本节课学习的目标。

  1.探索并掌握不等式的基本性质,并运用它对不等式进行变形.

  2.理解不等式性质与等式性质的联系与区别.

  3.提高观察、比较、归纳的能力,渗透类比的思想方法.

  二、探求新知,讲授新课

  第一部分:学前练习

  1. -7 ≤ -5, 3+4>1+4

  5+3≠12-5, x ≥ 8

  a+2>a+1, x+3 <6

  (1)上述式子有哪些表示数量关系的符号?这些符号表示什么关系?

  (2)这些符号两侧的代数式可随意交换位置吗?

  (3)什么叫不等式?

  目的:设计该部分是为了让学生上新课之前先回顾一下上节课学习的内容。

  第二部分:探究新知:

  1.商场A种服装的价格为60元,B种服装的.价格为80元

  (1)两种服装都涨价10元,哪种服装价格高?涨价15元呢?

  (2)两种服装都降价5元,哪种服装价格高?降价15元呢?

  (3)两种服装都打8折出售,哪种服装价格高?

  2.已知 4 > 3,填空:

  4×(-1)——3 ×(-1)

  4×(-5)——3 ×(-5)

  目的:设计该部分的目的是为了引出不等式的基本性质做铺垫。

  第三部分:不等式的基本性质的探究

  1:填空: 60 < 80

  60+10 80+10

  60-5 80-5

  60+a 80+a

  性质1,不等式的两边都加上(或减去)同一个整式,不等号的方向不变.

  2:填空(1):60 < 80

  60 ×0.8 80 ×0.8

  填空(2): 4 > 3

  4×5 3×5

  4÷2 3÷2

  性质2,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

  3:填空: 4 > 3

  4×(-1) 3×(-1)

  4×(-5) 3×(-5)

  4÷(-2) 3÷(-2)

  性质3,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

  三、小结不等式的三条基本性质

  1. 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;

  2. 不等式两边都乘(或除以)同一个正数,不等号的方向不变;

  3.*不等式两边都乘(或除以)同一个负数,不等号的方向改变 ;

  与等式的基本性质有什么联系与区别?

  四、典型例题

  例1.根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:

  (1) x-2< 3 (2) 6x< 5x-1

  (3) 1/2 x>5 (4) -4x>3

  解:(1)根据不等式基本性质1,两边都加上2,

  得: x-2+2<3+2

  x<5

  (2)根据不等式基本性质1,两边都减去5x,

  得: 6x-5x<5x-1-5x

  x<-1

  例2.设a>b,用“<”或“>”填空:

  (1)a-3 b-3 (2) -4a -4b

  解:(1) ∵a>b

  ∴两边都减去3,由不等式基本性质1

  得 a-3>b-3

  (2) ∵a>b,并且-4<0

  ∴两边都乘以-4,由不等式基本性质3

  得 -4a<-4b

  五、变式训练:

  1、已知x<y,用“<”或“>”填空。

  (1)x+2 y+2 (不等式的基本性质 )

  (2) 3x 3y (不等式的基本性质 )

  (3)-x -y (不等式的基本性质 )

  (4)x-m y-m (不等式的基本性质 )

  2、若a-b<0,则下列各式中一定成立的是( )

  A.a>b B.ab>0

  C. D.-a>-b

  3、若x是任意实数,则下列不等式中,恒成立的是( )

  A.3x>2x B.3x2>2x2

  C.3+x>2 D.3+x2>2

  六 、小结

  七、作业的布置

  八、 以上是我对这节课的教学的看法,希望各位专家指正。谢谢!

等式的性质说课稿4

  一 说教材

  (一)、教材分析:

  等式性质是学生了解了一元一次方程概念后的一章重点内容,是解方程必备知识,对解一元一次方程中的移项、合并同类项起着至关重要的作用。学生对等式的性质进行探索与研究过程中所涉及的转化思想、归纳方法是学生研究数学乃至其它学科所必备的思想。

  (二)、教学目标:

  a、知识目标:

  通过网络教学让学生探索等式具有的性质并予以归纳达到解方程的目的

  b、能力目标:

  通过网上观察图片、实验和游戏,培养学生探索能力、观察能力、归纳能力和应用知识的能力以及动手操作能力

  C,情感目标:

  通过网络模拟实验和网络互评,增强合作交流意识、团队意识和创作精神。

  (三)、教学重点:

  新课标强调获得知识的过程远比知识本身更有价值,因而要注重发展学生应用的能力所以把本课重点确定为:等式基本性质的归纳。

  (四)、教学难点:

  根据7年级学生的年龄特征和认知特点,从特殊到一般,从具体到抽象,适合7年级学生思维能力,而本课难点决定利用等式基本性质解一元一次方程,为恰恰是这一特征的体现。

  二、说教法

  ㈠教学方法:

  如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:1,网络模拟实验操作法2,“看——议——讲”结合法3,归纳法4,讨论法5,网络游戏结合法6,成果展示法

  ㈡教学方法的理论依据:

  (1)以学生为主体 学生参于数学活动为主线,培养学生创新能力和实践能力为主旋。

  (2)由内向外原则 启发学生从书本知识回到社会实践,学以致用,落实教学目标。

  (3)创感思维培养原则 新的世纪是一个创感的时代,不断培养学生的创感精神是新世纪给予数学教学新的要求,利用网络游戏、flash动画等不但提高学生兴趣,更培养学生的创作精神。

  三:说学法

  教学的宗旨是让学生学会学习,教师要为学生构建一个学习的平台,学生是独立行走的人

  本课主要引导学生利用网络采取观察、模拟实验,猜想、探究、合作、互评、网络游戏、欣赏、创作等学习方法。

  这些符合方法本阶段学生特点:1 、学生逻辑思维从经验型逐步向理论型发展。观察能力、记忆能力和想象能力也随着迅速发展。2,好动、好奇、好表现,是本阶段学生的特点 3,学生的创感思维在初一已处在一定阶段,对事物的认识已有一个层次,通过网络教育,加深学生对创感思维的培养.

  四:说程序

  本课课程设计如下:导入探索、新授知识,知识应用,归纳小结,布置作业

  (一), 导入探索:

  1:学生登入本局域网观看教师制作的网络课件图片

  想一想,和尚将扁担放中间,那么两桶水有什么要求?

  设计意图:通过形象导入能激起学生学习的欲望和探索的渴求,从中引出等式的概念。

  (二),模拟试验

  提问:你发现了什么,将天平与等式联系起来,你又有什么收获

  设计意图:使学生对等式的性质有形象的认识,形成一个感性的阶段,更培养了学生操作能力,打开学习的思维空间,激发学习兴趣.

  (三),归纳性质

  (1)学生利用局域网观看教师课件,且自己总结出等式的性质。

  设计意图:通过多媒体课件,引导学生有意识地去发现规律,掌握规律。培养学生动手操作的能力、实验观察能力和抽象概括的能力。提高学生的学习兴趣。

  (2)知识应用:利用局域网,登入教师网络课件,完成如下题目,要求:在电脑上完成且将答案利用网络传给其它同学进行互改互评。

  设计意图:让学生体会根据等式的基本性质从已知等式出发可以变形得到新的等式。为即将用等式解方程打下基础。网络互评,不但培养学生纠正错误能力和实际操作能力,更培养了团队精神.

  (四)、讲解例题。

  设计意图:题目的安排低起点,小台阶,循序渐进,符合学生接受知识的特点,培养学生的灵活性,多角度思考数学问题的方法。

  (五)、课堂练习

  学生以小组形式上网搜索用等式性质解方程的题目,并且解出.若遇问题可以用网络手段(QQ,在线解答、发帖子等)寻求帮助,然后小组汇报你的收获与解题亮点.。

  设计意图:充分利用网络资源为教学服务,提升学生的探究意识,培养学生寻找问题解决问题的能力,增强学生的团队精神. 学生是参于学习活动主体,体现活动民主,自由的课堂理念。

  (六)、归纳总结

  1,对自己说,你有什么收获?对老师说,你还有什么困惑?

  2,观看网络资源《等式性质》开发的游戏和flash动画

  设计意图:共同回顾学习内容,有助于学生将知识和方法系统化,条理化,同时兼顾以人为本的思想,关注学生的学习体会和感受。 利用等式性质开发的网络资源更是开拓了学生的视野,将知识运用于实践,培养学生的`创作灵感

  (七),布置作业

  1, 作业根据难度分成ABCD四种模型中,选择你最喜欢的一种做。

  2,利用等式性质设计你喜欢的物品、图片或者游戏等,并将你的成果放在你的QQ空间、个人主页或者老师的博客上。

  设计意图:作业设计具有梯度性,设计ABCD四个梯度作业,真正做到因材施教。第二题,将知识不限于书本,从书本走上社会实践,将知识结构灵活运用,既是新课标的要求,又提升学生创感思维。

  五、说应用

  1,利用网络中的图片资源和flash资源《和尚挑水》导入,动静结合,引起学生的学习兴趣,调动学生的学习积极性.使学生对于等式的概念有直观、形象的认识。

  2,学生上网操作网上模拟天平训练,不但让学生更直观更贴切地巩固等式的性质,帮助学生解决本课重点即对等式性质归纳,更培养了学生的创感精神。

  3,学生自己从网上搜索相关题目且采用网络互评,不但培养学生纠正错误能力和实际操作能力,更培养学生团队精神。帮助学生突破利用等式解一元一次方程这一教学难点。

  4,总结中欣赏了网络资源flash动画和游戏,既加深了学生对等式性质的理解,又开拓了学生视野,培养了学生创新精神,更丰富了创感思维,又是对等式性质进行提升和巩固。

等式的性质说课稿5

  《不等式的基本性质》它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:

  本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

  根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标:

  知识与技能:

  1. 感受生活中存在的不等关系,了解不等式的意义。

  2. 掌握不等式的基本性质。

  过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。

  情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。

  教学重难点:

  重点:不等式概念及其基本性质

  难点:不等式基本性质3

  教法与学法:

  1. 教学理念: “ 人人学有用的数学”

  2. 教学方法:观察法、引导发现法、讨论法.

  3. 教学手段:多媒体应用教学

  4. 学法指导:尝试,猜想,归纳,总结

  根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。

  下面我将具体的教学过程阐述一下:

  一、创设情境,导入新课

  上课伊始,我将用一个公园买门票如何才划算的例子导入课题。

  世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的'李敏同学喊住了王小华,提议买30张票。但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?

  (此处学生是很容易得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)

  紧接着进一步提问:若人数是x时,又当如何买票划算?

  二、探求新知,讲授新课

  引例列出了数与数之间的不等关系和含有未知量120<5x的不等关系。那么在不等式概念提出之前,先让学生回顾等式的概念,“类比”等式的概念,尝试着去总结归纳出不等式的概念。使学生从一个低起点,通过获得成功的体验和克服困难的经历,增进应用数学的自信心,为下面的学习调动了积极。

  接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。

  (1)a是负数;

  (2)a是非负数;

  (3) a与b的和小于5;

  (4) x与2的差大于-1;

  (5) x的4倍不大于7;

  (6) 的一半不小于3

  关键词:非负数,非正数,不大于,不小于,不超过,至少

  回到引入课题时的门票问题120<5x,我们希望知道X的取植范围,则须学习不等式的性质,通过性质的学习解决X的取植

  难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。

  反馈练习:用一个小练习巩固三条性质。

  如果a>b,那么

  (1) a-3 b-3 (2) 2a 2b (3) -3a -3b

  提出疑问,我们讨论性质2,3是好象遗忘了一个数0。

  引出让学生归纳,等式与不等式的区别与联系

  三、拓展训练

  根据不等式基本性质,将下列不等式化为“<”或“>”的形式

  (1)x-1<3 (2)6x<5x-2 (3)x/3<5 -4x="">3

  [设计意图:类比等式的基本性质,研究不等式的性质,让学生体会数学思想

  方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,

  让学生在合作交流中完成任务,体会合作学习的乐趣。]

  问题4:比较不等式基本性质与等式基本性质的异同?(学生小组合作交流。)

  [设计意图:比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识、发展学生的辨证思维。]

  3、尝试练习,应用新知

  小黑板出示下列练习

  一:孙悟空火眼金睛:

  1、如果x+5>4,那么两边都可得x>-1

  2、在-7<8的两边都加上9可得。

  3、在5>-2的两边都减去6可得。

  4、在-3>-4的两边都乘以7可得。

  5、在-8<0的两边都除以8可得

  二:你来决策:

  如果a>b,那么

  1、a-3 b-3(不等式性质)

  2、2a 2b(不等式性质)

  3、-3a -3b(不等式性质)

  4、a-b 0(不等式性质)

  [设计意图:数学练习是巩固数学知识,形成技能、技巧的重要途径,而机械、呆板的题海战术只能把学生在学习新知识时的热情无情地淹灭。两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。]

  出示例题

  例1根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:

  (1)x-5>-1(2)-2 x>3

  (先让学生思考,如何根据不等式的基本性质来进行变形,然后教师书写规范的步骤,并让学生讲解每一步的算理。)

  解(1)根据不等式的性质1,两边都加上5得:

  x-5+5>-1+5

  即x>4

  (2)根据不等式的性质3,两边都除以-2得:

  即x<-3/2

  练习:根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:

  (1)3x>5(4)-4 x<3-x

  [设计意图:由于新教材中例题较少,学生对于书写格式了解太少,因此教师应该加以规范。]

  4、总结反思,获得升华

  让学生从知识方面、能力方面、思想方面进行总结。鼓励学生畅所欲言总结对本节课的收获与体会。

  [设计意图:让学生通过总结反思,一是进一步引导学生反思自己的学习方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育成功,用自信蕴育自信,激励学生以更大的热情投入到以后的学习中去。]

  5、布置作业,深化巩固

  必做作业:习题11.2第二题推荐作业:课本中的试一试。

  [设计意图:这样做的目的在于,让不同层次的学生都有不同程度的提高。]

  七、板书设计:

  为了能直观地显现知识的脉络,精当的突出教学重点,加深学生对知识的理解和记忆,培养学生思维的连贯性。本着板书的科学性,条理性原则,设计板书如下:

  11.2不等式的基本性质 不等式的基本性质 1:如果ab,那么a+c>b+c,a-c>b-c(2)-2 x>3 2:如果a>b,c>0,那么ac>bc 如果a0,那么acb,c<0,那么acbc