数学说课稿初中

时间:2022-12-12 11:41:40 说课稿 我要投稿

【推荐】数学说课稿初中集合五篇

  作为一位杰出的教职工,通常需要准备好一份说课稿,借助说课稿可以有效提升自己的教学能力。那么大家知道正规的说课稿是怎么写的吗?下面是小编为大家整理的数学说课稿初中5篇,希望能够帮助到大家。

【推荐】数学说课稿初中集合五篇

数学说课稿初中 篇1

  今天我说的课题是“向量的直角坐标运算”,主要研究两类问题:

  1、向量的直角坐标运算

  2、培养学生的创新精神和实践能力,履行“以学生发展为本”的教育思想。

  下面我从三个方面阐述这节课。

  第一方面:教材分析

  本节的授课内容为“向量的直角坐标运算”,选自人教版中等职业教育国家规划教材《数学》(提高版)第一册第六章第六节,我从四个方面进行教材分析。

  (一)教材的地位和作用

  向量的直角坐标运算是向量的重要内容,它使向量的运算完全数量化,将数与形紧密地结合起来,使得用向量的方法解决几何问题更加方便,从而极大地提高了学生利用向量知识解决实际问题的能力。

  同时,这节课的教学内容和教学过程对进一步培养学生观察、分析和归纳问题的能力具有重要意义。

  (二)教材的处理

  结合教学参考书和学生的学习能力,我将“向量的直角坐标运算”安排为两课时。本节为第二课时。

  根据目前学生的状况以及以往的经验,我发现,虽然这节课的内容比较简单,但由于以前教师讲解得过多,导致学生丢失了很多重要的知识。为了激发学生的学习热情,我采用复习提问的形式,师生共同得出向量线性运算的直角坐标运算法则和一个向量的坐标等于向量的终点坐标减去始点相应坐标的结论,直接切入本节课的知识点。之后,由浅入深、由低到高地设计了三个层次的问题,逐步加深学生对向量直角坐标运算的记忆和理解。

  由此,我对教材的引入、例题和练习做了适当的补充和修改。

  (三)教学重点和难点

  根据学生现状、教学要求以及教材内容,我确立本节课的'教学重点为:使学生熟练地掌握向量的直角坐标运算。

  由于学生的实际情况──运用所学知识分析和解决实际问题的能力较差,我把本节课的难点定为:向量直角坐标运算的应用。

  要突破这个难点,关键在于紧扣向量直角坐标运算的相关知识,去发现解决问题的方法。

  (四)教学目标的分析

  根据教学要求、教材的地位和作用以及学生现有的知识水平和数学能力,我把本节课的教学目标确定为以下三个方面。

  1、知识教学目标

  能准确表述向量线性运算的坐标运算法则;明确一个向量的坐标等于向量的终点坐标减去始点的相应坐标;掌握用向量的直角坐标运算解决平面几何问题的方法。

  2、能力训练目标

  培养学生观察、分析、比较、归纳的能力及创新能力;培养学生运用数形结合的方法去分析和解决问题的能力。

  3、德育渗透目标

  通过学习向量的直角坐标运算,实现几何与代数的完全结合,让学生明白:知识与知识之间、事物与事物之间的相互联系和相互转化;通过例题及练习的学习,培养学生的辩证思维能力,养成勤于动脑的学习习惯。

  第二方面:教法与学法分析

  现代教学论指出:“教学是师生的多边活动,在教师进行‘反馈—控制’的同时,每个学生也都在进行微观的‘反馈—控制’。”由于任何教学都必须通过学生自身的学习建构才有成效,故本节课采用“发现式教学法”来组织课堂教学。这样,可充分调动学生的学习积极性和能动性,突出学生的主体作用。

  在教学中借助于计算机课件辅助教学。

  第三方面:教学过程

  共分为六个环节,具体的时间安排如下:复习提问约4分钟,导入新课约6分钟,创设问题约30分钟,小结约3分钟,布置作业约2分钟。

  (一)复习提问

  (1)向量在直角坐标系中坐标的定义是什么?

  (2)若o为原点,则点A的坐标与向量的坐标之间的关系是什么?

  (3)如果两个向量相等,那么这两个向量的坐标需满足什么条件?

  课堂教学论认为:“要使教学过程最优化,首先要把所学习的知识和学生已有的信息联系起来”。通过这三个问题的复习就可以使学生在学习新的知识前,获得适当的知识积累。

  (二)导入新课

  在教学过程中,我提出两个问题:

  问题1 已知a=a1e1+a2e2,b=b1e1+b2e2,(e1、e2为直角坐标系的基底)

  1、则a,b的坐标为……。

  2、求a+b,a—b,λa。

  3、求a+b,a—b,λa的坐标。

  问题2已知A=(x1,y1),B=(x2,y2)。

  1、则,的坐标分别为……。

  2、化简。

  3、求的坐标。

  这两个问题由师生共同练习完成。

  通过师生间的相互讨论、相互启发、相互合作,达到温故知新的目的,也由低级到高级的认知顺序引出本节课的知识点,这很自然,学生比较容易接受,容易激发学生发现向量直角坐标运算规律的强烈欲望。

  (三)创设问题

  这是本节课的核心。根据循序渐进、由浅入深的教学原则,我设计了三个层次的问题。

  第一层次:先由师生共同归纳总结由问题1、2得出的结论,培养学生观察、分析、比较、归纳的能力。

  由问题1我们得到结论1:

  a+b=(a1+b1,a2+b2),

  a—b=(a1—b1,a2—b2),

  λa=(λa1,λa2)。

  用语言叙述为:

  两个向量的和与差的坐标分别等于两个向量相应坐标的和与差。

  数乘向量的坐标等于数乘向量相应坐标的积。

  由问题2我们得到结论2:

  =(x2—x1,y2—y1)。

  用语言叙述为:

  一个向量的坐标等于向量终点的坐标减去始点的相应坐标。

  这两个结论是向量直角坐标运算的规律,为本节的知识点。为加深认识,我又安排了练习1。

  练习1(口答)下列说法是否正确:

  (1)已知向量a=(—2,4),b=(5,2),

  则:①2a=(—4,4),2b=(5,4)。②2a=(—4,8)。

  (2)已知A(2,1),B(3,8),则=(—1,—7)。

  ①让学生注意数乘向量的坐标等于数乘向量相应坐标的积。

  ②提醒学生区分点的坐标和向量坐标,两者是不同的概念。

  上述(2)小题让学生明确一个向量的坐标等于向量终点坐标减去始点的相应坐标,而不等于始点坐标减去终点的相应坐标。

  第二层次:设计练习2、3、4。

  练习2 已知如下向量a、b,求a+b,a—b,3a+4b,4a—4b的坐标。

  (1)a=(—2,4),b=(5,2);

  (2)a=(4,3),b=(—3,8)。

  练习3 已知A(2,1),B(3,8),求。

  练习4 已知(2,3),B(4,5),c(6,8)。

  (1)若3=,求D点的坐标。

  (2)求2—3+2。

  这组练习由学生独立完成。目的是使学生进一步掌握向量的直角坐标运算和向量相等的条件,也体会到对于两个向量相加减的直角坐标运算法则可以推广到有限个向量相加减。对于练习4中的(2)让学生认识到先进行向量线性运算几何形式的化简,再进行代数运算比较好,也感受到几何与代数密不可分。

  第三层次:遵循深入浅出的教学原则,我安排了例题1和练习5,这是本节课重点知识的应用。

  例题1 已知平行四边形ABcD的三个顶点A、B、c的坐标分别是A(—2,1),B(—1,3),c(3,4),求顶点D的坐标。

  例题1有多种解法,除了课本中给出的由向量线性运算的几何形式向代数形式转化的方法,还可以利用向量=或=列方程求解,也可以利用线段Ac、BD的中点E的向量表达式进行等量转化以求出D点的坐标。但不论哪一种解法都用到了一个很重要的数学方法──数形结合。

  讲这个题时,我板书采用的是课本给出的方法,目的是引导学生熟练地转化向量线性运算的几何形式和代数形式,其他的方法则只是给予提示,给学生留出空间,开阔思路,培养学生的发散思维能力。

  通过例题1让学生深刻理解向量的直角坐标运算,亲身体会“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事非”(华罗庚语)。从而提高学生利用数形结合的方法解决实际问题的能力。

  练习5已知A(—2,1),B(1,3),求线段AB中点m和三等分点P、Q的坐标。

  练习5是例题1的进一步深入,学生以小组讨论的形式,采用多种方法解题,教师以巡视的方式进行个别引导,并让有不同解法的学生上黑板演示,让学生动手实践、自主探索、合作交流,围绕中心各抒己见,把思路方法弄清。

  通过这个练习,学生可以更熟练地掌握向量直角坐标运算的应用,并使集体智慧个人化,书本知识灵活化,同时培养学生独立思考的能力和团结协作的精神。

  (四)小结

  为了让学生将获得的知识进一步条理化、系统化,同时培养学生归纳总结的能力及练习后进行再认识的能力,引导学生对本节课进行总结:

  向量的直角坐标运算使向量运算完全数量化,将数与形紧密地结合起来,这样很多的几何问题就可以通过“数形结合”的方法转化为大家熟悉的数量的运算。

  (五)布置作业

  为了让学生进一步巩固本节课内容,提高自觉学习的能力,我布置作业如下:

  1、课本第186页:练习A1(1)、2(1);练习B 1、2。

  2、思考题:3a与a的坐标有什么关系?位置有什么特点?

  A组的题用来巩固向量的直角坐标运算,B组的题则让学生进一步掌握向量直角坐标运算的应用,思考题又为下一节课的内容埋下伏笔。

  (六)板书设计

  在黑板中上方书写完课题后,将版面分为四部分,从上而下,自左向右,按授课顺序书写授课内容,达到清晰、条理、有序的目的。板书内容如下:

  课题:6、2、2 向量的直角坐标运算

  问题1练习1 例1 练习5

  结论1练习2

  问题2练习3

  结论2练习4

  本节的说课内容到此结束,谢谢大家。

数学说课稿初中 篇2

  各位评委、各位老师:

  大家好!今天我说课的题目是:《代数式的值》。我准备从如下几个方面展示:教材分析,教法、学法分析,教学程序设计,评价与反思。

  一、教材分析

  (一)、教材内容的地位和作用

  《代数式的值》选自义务教育课程标准实验教科书(人教版)七年级数学(上)第二章,是我个人根据学生的知识基础较差、认知能力不强以及思维品质不够活跃等实际情况而在教学中加以补充的一节课。代数学作为一门学科,它的课题首要的就是研究用字母表示式子的变形规则和解方程的方法。因此,本节课既是算术知识的延续,又为后面知识的学习起着导航作用,即:对于代数我们研究什么?如何研究?

  (二)、教学目标

  根据新《课标》要求和上述教材分析,结合学生的情况,我制定了以下教学目标:

  知识、能力目标:了解代数式的值的概念,知道代数式求值的书写格式,能区分易混淆语言,清楚代数式求值过程中易出错的地方,会解决简单的问题,并在此基础上应用变式训练进行拔高。

  情感目标:使学生明白数学来源于生活,学习数学是为了解决实际问题,,培养学生科学的学习态度,同时通过多媒体演示激发学生探究数学问题的兴趣。

  (三)、教学重点、难点

  教学重点:代数式求值的书写格式。

  教学难点:代数式求值的书写格式,变式训练知识的运用。

  二:教法、学法分析

  本节课涉及的知识点不多,知识的切入点比较低,根据课标的要求,代数式

  的值的概念属于了解内容,所以本节课较多的时间用在代数式求值知识的运用上。教师以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手

  动起来,充分调动了学生的.学习积极性,达到事半功倍的教学效果。而学生在教师的鼓励引导下小结方法,克服思维定势,并通过小组讨论、组际竞赛等多种方式增强学习的成就感及自信心,从而培养浓厚的学习兴趣。

  板 书 设 计:

  代数式的值

  一、定义 四、小试牛刀 七、练习 二、例1五、阶段小结 八、总结 三、例2六、例3 九、作业

  四.评价与反思

  新课标要求我们合理选用教学素材,优化教学内容。所以我在教学中,选用具有现实性和趣味性的素材,并注意学科间的联系。忠实于教材,但不迷信教材,在研究的基础上使用教材,对于课堂和课外练习一部分取材于课本,而概念的引入却有别于教材。以激发学生的学习积极性和主动探究数学问题的热情。

  教学方法合理化,不拘泥于形式。在教学中,通过问题串与活动系列,实施开放式教学,随处可见学生思维间碰撞的火花,发展了学生的思维能力,培养了学生思考的习惯,增强了学生运用数学知识解决实际问题的能力。

  无论是教学环节设计,还是课外作业的安排上,我都重视知识的产生过程,关注人的发展,意到个体间的差异,注意分层教学,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的人在数学上都得到不同的发展。

数学说课稿初中 篇3

  各位评委、老师:大家好!我说课的内容是人教版义务教育课程标准实验教科书八年级上册第十五章第二大节第四课单项式的乘法,下面我从教材分析、教学目的的确定、教学方法的选择、教学过程的设计等几个方面对本节课进行分析说明。

  一、教材分析

  本节课主要讲解的是单项式乘以单项式,是在前面学习了幂的运算性质的基础上学习的,学生学习单项式的乘法并熟练地进行单项式的乘法运算是以后学习多项式乘法的关键,单项式的乘法综合用到了有理数的乘法、幂的运算性质,而后续的多项式乘以单项式、多项式乘以多项式都要转化为单项式的乘法,因此单项式的乘法将起到承前启后的作用,在整式乘法中占有独特的地位。

  二、教学目的

  1、使学生理解单项式乘法法则,会进行单项式的乘法运算 。

  2、通过单项式乘法法则的推导,发展学生的逻辑思维能力。

  教学目的的第一条的确定是考虑到学生对单项式的概念、有理数乘法、幂的运算都较为熟练,在此基础上导出的单项式乘法法则学生能够达到“理解”的要求,同时由于单项式乘法的所有内容已包含在这节课中,学生能够按照一定的步骤完成单项式的乘法运算,据此确定了教学目的的第一条。而单项式法则的导出过程是发展学生逻辑思维能力的极好素材,据此确定了教学目的的第二条。

  三、教学重点、难点:

  重点:掌握单项式乘法法则。

  (这是因为要熟练地进行单项式的乘法运算,就得掌握和深刻理解运算法则,对运算法则理解得越深,运算才能够掌握的越好)

  难点:多种运算法则的综合运用

  (这是因为单项式的乘法最终将转化为有理数的乘法、同底数的幂相乘、幂的乘方、积的乘方等运算,对于初学者来说,由于难于正确辨认和区别各种不同的运算及运算所使用的法则,易于将各种法则混淆,造成运算结果错误。)

  四、教学方法

  本节课在教学过程的不同阶段采用不同的教学方法,以适应教学的需要。

  1、在新课学习阶段的单项式的乘法法则的推导过程中,采用了引导发现法。通过教师设计的问题,引导学生将需要解决的问题转化成用已学过的知识可解决的问题,让学生即掌握了新的知识,又培养了学生探索探索问题的能力,充分体现了教师的主导作用和学生的主体作用,使学生始终处在观察思考之中。引导发现法的使用对实现教学目的的第二条起了很重要的作用,突出了本节课的重点。

  2、在新课学习的例题讲解阶段,采用了讲练结合法。对例题的学习,围绕问题进行,通过教师引导、学生观察、思考,寻求解决问题的方法,在解题的过程中展开思维。与此同时还进行多次有较强针对性的练习,分散难点,对学生分层进行训练,化解难点,并注意及时矫正,使学生在前面出现的错误不致于影响后面的解题,为后面的学习扫清障碍,通过例题的学习教师给出了解题规范,并注意对生良好学习习惯的培养。

  3、在归纳小结这个阶段采用师生共同总结,旨在训练学生归纳的方法,并形成相应的知识系统,进一步防范学生在运算中容易出现的错误。

  4、本节课的教学内容丰富,训练量大,利用投影仪,增大课堂容量,提高课堂教学效率。

  五、教学过程

  本节课的教学过程主要包括以下五个环节:

  1、 创设问题情境

  2、新课学习

  3、反馈练习

  4、小结

  5、作业布置。

  (1) 创设问题情境

  本节课通过一实际问题,引入课题,这样的目的是通过问题情境的创设,激发学生求知的欲望,通过问题1、问题2的设置进而明确本节课的学习内容。

  (2) 新课学习

  新课学习包括单项式乘法法则的推导和例题讲解。

  ① 单项式乘法法则的推导

  由于八年级学生还不具备独立获取知识的能力,单项式乘法法则的推导必须在教师的指导下完成,为此我设计了两个引例。引例1中的两个问题就是引导学生进行观察、分析两个单项式如何相乘,使学生能够运用乘法交换律、结合律和同底数幂的运算性质等知识探索单项式乘以单项式的运算法则。引例2让学生动手尝试,在尝试成功的基础上再提出问题3,由问题3引导学生进行归纳,最后得出单项式乘以单项式的法则。从而实现理解单项式乘法法则的这一教学目的,同时在上述过程中,让学生感受到在研究问题中所体现的“将未知转化为已知”的数学思想,通过尝试活动,使学生体会到从“特殊到一般”的认识规律,从而启迪了学生的思维,使学生亲身感受到数学知识的`产生和发展过程,发展了学生的逻辑思维能力,较好地实现了教学目的第二条,教学的重点内容学生得以掌握。

  在此基础上,我又设计了一组简单的练习,由学生回答,强化对单项式的乘法法则的理解和运用,发现问题及时纠正。

  ② 例题讲解

  本着循序渐进的原则,对例题按照逐步增加运算种类进行了编排,使之由浅入深,由易到难,由单一到综合。我总共设计了三道例题。

  例1是单项式乘以单项式的计算,在讲解此题时关键是让学生按照单项式乘法的法则进行运算。例2是单项式的乘方与乘法的混合运算,在例2后我又设计了一问题,此问题的设计主要是引导学生观察,根椐题目特征,辩认出它们是哪种运算,应选用什么样的法则进行计算,使学生逐渐分清运算类型,正确实运用法则,以实现难点的分散和突破,并提高学生运算的熟练程度。例3是单项式的乘法在实际生活中的应用,通过例3使学生认识到数学在日常生活和生产中应用十分广泛,从而逐步培养学生应用数学的意识。

  在例题的教学过程中除学生口算计算过程,教师要给出规范的解题过程,并要求学生按规范的书写格式进行练习和作业。

  在每道题完成之后,都配有与例题相近的巩固练习,由学生板演和分组练习,发现问题及时纠正,以实现“会进行单项式的乘法计算”这一教学目的。

  (3) 反馈练习

  根据本节课的教学目的我又设计了反馈练习,以了解学生对本节课所学的内容的掌握情况,并再一次对出现的问题进行矫正,使学生对单项式的乘法运算的熟练程度得以加强。

  (4) 小结

  本节课的小结由师生共同完成,先由教师提问,学生回答,然后教师归纳形成知识系统,通过小结,使学生明确单项式的乘法最终将转化为有理数的乘法、同底数的幂相乘、幂的乘方、积的乘方等运算,引起学生对单项式乘法中系数与指数运算易混淆等问题的重视。

  (5) 布置作业

  数量不多的作业,既能够让学生能对本节知识掌握得更加牢固,又能够有充裕的时间拓展自己的视野。

  六、教学评价、反馈措施

  本节课采用了不同的反馈手段和较多的反馈练习。

  1、设计分段练习。例如练习一-------练习四每次练习主要解决一重点问题,同时使教师及时了解学生对数学知识的掌握情况,发现问题及时矫正,扫清后续学习障碍。

  2、采用不同的练习方法。如口答、笔答、板演、快速强答等,以增加反馈层面。通过练习使大多数学生的学习情况都能够及时反馈给教师,使教师对教学情况心中有数。

  3、及时矫正。对每次练习情况进行讲评,对正确的解答及时给予肯定,发现问题及时评讲。

  这就是我对本节课总的设计过程,具体过程将体现在我的课堂教学之中,谢谢大家!

数学说课稿初中 篇4

  一、说教材

  1、教材的地位与作用

  《一元二次方程的解法》是人教版九年级上册第二十一章第二节的内容。从本章来看,前几节课已经学习了一元二次方程的概念及四种解法,后面即将学习一元二次方程的应用,本节课具有承上启下的作用;从本册书来看,一元二次方程是后面学习二次函数、圆中的有关计算的基础;从整个初中阶段学生数学学习的内容来看,一元二次方程是初中数学“数与代数”的的重要内容之一,在初中数学中占有重要地位,通过一元二次方程的学习,可以对已学过的实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它多元方程、高次方程、一元二次不等式、二次函数等知识的基础;从学科领域来看,学习一元二次方程对其它学科也有重要意义,如物理学中电学的一些计算、化学中根据化学方程式的计算等,都要用到一元二次方程的知识。本节课是一元二次方程的解法的练习课,旨在通过对一元二次方程四种解法的类比归纳,让学生会选择适当的方法解一元二次方程,并在学习中体会一些常用的数学思想。

  2、教学目标

  (1)熟练掌握一元二次方程的四种解法,并能选择适当的方法解一元二次方程。

  (2)通过对一元二次方程的四种解法进行类比,理解解一远二次方程的基本思想是“降次”,体验分类讨论、转化归纳等数学思想。

  (3)通过学生间合作交流、探索,进一步激发学生的学习热情,求知欲望,同时提高小组合作意识和一丝不苟的精神。

  3、教学重难点

  重点:用适当的方法解一元二次方程。

  难点:对解一远二次方程的基本思想是“降次”的理解。

  二、说教法学法

  常言道:知己知彼,百战不殆。我们教学就相当于和学生作战,只有了解学生的学习情况,才能够针对学生的具体水平而选择最好的方法将知识传授给学生,所以要先分析学情,再确定教法。

  1、学情分析

  在学习本节课之前,学生已经学习了一元二次方程的概念及四种解法,在七、八年级的时候也学习了一元一次方程、二元一次方程组、分式方程的解法,掌握了一些解方程的基本能力。再者,九年级学生的数学思维已有一定程度的发展,具有一定分析推理能力,同时,在讨论、探索、交流学习等方面有较为丰富的知识和经验,因此,应更多地应用探讨、合作交流等方法让学生去求得新知识,加深和扩展学生对一些数学思想的理解。

  2、教法学法

  本节课的主要任务是熟练掌握一元二次方程的四种解法,并能选择适当的方法解一元二次方程,所以,我采用的方法可以概括性为四个字:精讲多练。讲,就是讲四种解法的优缺点及“降次”的思想;练,就是通过大量的解一元二次方程的练习题,让学生体会选择适当的方法的重要性及所有的一元二次方程都是通过“降次”转化为一元一次方程而求解,体验化归的数学思想。

  所以,本节课主要采用引探式教学方法,在活动中老师着眼于“引”尽力激发学生求知的欲望,引导他们解决问题并掌握解决问题的规律和方法,学生着眼于“探”,通过探索活动发现规律,解决问题,发展探索能力和创造能力。同时,采用电脑多媒体课件辅助教学,利用投影仪出示练习题,节约了课堂时间,保证学生能有充足的时间进行练习、交流,还可以展示学生的练习结果,纠正学生存在的共性问题。

  三、说教学过程

  1、 回顾旧知:学生回顾一元二次方程的概念及四种解法(直接开平方法、配方法、公式法、因式分解法)

  2、 探究新知:出示四道有代表性的一元二次方程,要求学生自己选择方法解方程。学生完成任务后,以小组为单位交流或者跨小组交流,看看彼此用的是不是同一种方法,若方法不同,比较看谁的方法更简单。老师深入各小组了解学生的解题情况,并选出几个有代表性的学生的解题过程在投影仪上展示。

  3、 归纳小结:老师以四名学生的解法为例,引导学生体会不同的一元二次方程可以选择不同的方法来解,选择的基本原则就是简单易行。对于形如完全平方等于非负数的形式的一元二次方程,采用直接开平方法来解;对于方程的左边能用提公因式或乘法公式分解因式分解的一元二次方程,则采用因式分解法求解;其余的方程,则选择公式法或配方法。通过比较发现,无论选择哪一种方法解一元二次方程,基本的思想都是“降次”。直接开平方法和公式法是通过开平方达到降次的目的,配方法是通过配方再开平方达到降次的目的,因式分解法是通过把方程分解成两个一次因式的积等于0的形式而达到降次的目的',可谓是殊途同归。同时可以看出,这几种方法都是将“二次”降为“一次”,然后将一个一元二次方程化成了两个一元一次方程,然后用七年级学过的一元一次方程的解法来解决问题,这体现了一种转化的数学思想。可以给学生强调:我们学习数学知识有一种重要的方法,就是将遇到的新问题转化成我们已经学过的的、已经能解决的旧问题而解决,这就是转化归纳的数学思想。

  4、 拓展延伸:通过对一元二次方程解法的归纳,学生发现解一元二次方程的基本思想是“降次”,由此可以拓展:解高次方程的基本思想就是“降次”,降高次为一次,那么解多元方程的基本思想就是“消元”,这样学生就会理解以前学习的二元一次方程组和三元一次方程组的解法都采用的是代入消元法和加减消元法了。为学生以后学习多元高次方程的解法打下良好的基础。

  5、 巩固练习:通过前面的练习和讲解,学生对一元二次方程的解法有了新的认识,这时应该趁热打铁,再出示几道习题让学生练习。

数学说课稿初中 篇5

  一.说教材

  教材分析

  《轴对称图形》这课选自义务教育课程标准实验教科书《数学》三年级下册。教材在编排上从具体到抽象、从感性到理性、从实践到理论,指导同学们感知图形的轴对称现象,层次分明,循序渐进。

  对称是一种基本的图形变换,包括轴对称、中心对称、平移对称、旋转对称和镜面对称等多种形式。在自然界和日常生活中具有对称性质的事物很多,同学们对于对称现象并不陌生。例如,许多艺术作品、建筑设计中都体现了对称的风格。对称的物体给人一种匀称、均衡的美感。

  教材从同学们熟悉的事物入手,通过形式多样的活动,让同学们初步感知生活中的对称现象,进而认识简单的轴对称图形和对称轴,为同学们今后进一步探索简单图形的轴对称特性,把握简单图形之间的轴对称关系,以及利用轴对称方法对图形进行变换或设计图案打好基础。教材是按照知识引入——概念教学——知识应用的顺序逐步展开的,体现了知识的形成过程。教材先通过天安门、飞机、奖杯的实物图让同学们观察、分析他们的共同特点,引出“对称”的概念。接下来教材将这几样物品抽象为平面图形,引导同学们通过对折发现轴对称图形的基本特征,并初步描述了轴对称图形的概念。教材还在图中出现了“对称轴”这一名词,但没有给“对称轴”下定义或作出描述,只是让同学们有所认识。

  第二道例题则让同学们利用刚掌握的轴对称图形的初步知识,“做”出轴对称图形。通过这些活动,帮助同学们进一步积累感性认识,丰富对轴对称图形的体验,锻炼同学们的实践能力。

  “想想做做”中,通过一系列的习题,加深同学们对轴对称图形的认识。其中第3题在方格纸上提供一个轴对称图形的一半,要求画出它的另一半,使同学们有机会再一次在操作中体会轴对称图形的特征。在“想想做做”后面,还安排了“你知道吗”,介绍自然界中一些对称现象以及世界上一些著名的对称的建筑,以进一步拓展同学们的知识视野,帮助同学们体会“对称”的科学与美学价值。

  学情分析

  轴对称现象是同学们新接触的一个知识点,这种现象广泛蕴涵在大自然中,学习这部分的`知识,要求同学们具备观察能力和动手操作能力。

  说教学目标

  1.知识目标:使同学们感知现实世界中普遍存在的轴对称现象。通过观察、操作等活动,自主探求轴对称图形的特征,理解对称轴的含义,感受数学的美。

  2.能力目标:在活动中培养同学们从具体到抽象,再从抽象回到具体的思维方法。培养观察、操作、表达、思维能力与探索意识,发挥同学们的想像力、创造力,激发同学们的审美观点,培养同学们创造美的能力。

  3.情感目标:让同学们在实际操作活动中体验学习数学的乐趣,鼓励他们感受美、欣赏美、创造美,感悟数学知识的魅力,激发同学们学好数学的欲望。

  教学重点:理解轴对称图形的特征

  教学难点:掌握辨别轴对称图形的方法

  二.说教法

  陶行知先生说过这样一句话:“我们要活的书,不要死的书;要真的书,不要假的书;要动的书,不要静的书;要用的书,不要读的书。总起来说,我们要以生活为中心的教学做指导,不要以文字为中心的教科书。”在数学教学中,从生活中同学们感兴趣的物体出发,强有力的吸引住了同学们,让同学们体会数学与生活的紧密联系;为同学们创设探究学习的情境;同时根据教材的编排和儿童的心理特点和思维特点,这节课准备采用观察发现,小组讨论,合作学习发现的方法,培养同学们的探究能力和合作能力。

  三.说学法

  新课程标准指出:同学们是学习的主体。要让同学们成为真正的主人,就必须在数学活动中学习数学,也就是在创造数学中学习数学。本课从具体的同学们感兴趣的物体中,让同学们自己发现问题,提出问题,体验探索成功的快乐;通过动手操作,小组讨论来解决自己提出的问题;通过有层次的练习,提高同学们解决问题的能力,巩固所学知识。

  四.说教学过程

  我先从孩子们感兴趣的玩导入,在教师与同学们共同玩的过程中拉近我和同学们的距离,达到了寓教于乐的目的。 这节课的一开始,我先通过剪出一个“爱心”图,来吸引同学们的注意力,激发同学们的兴趣,并且也能比较自然地揭示这节课的课题。

  接下来,出示例题中的图片,让同学们通过仔细观察,并且自己动手折一折,来发现这些物体是对称的,揭示出“完全重合”这样一个概念,使同学们初步感知到平面图形的对称性,随后,让同学们继续动手折纸,进一步揭示出“轴对称图形”的概念,以及让同学们初步了解对称轴。

  然后给出一些同学们知道的几何图形和其他图形,即课本中的“试一试”,同样采用小组合作,共同探讨的学习方法,来解决问题。这样设计,能充分调动同学们的各种感官参与学习,既发挥了同学们的解决问题的主动性,又培养了同学们的发散思维,同时一定难度的图形判断,让同学们在跳一跳的前提下才摘到他要的果实,激发同学们爱动脑筋,勇于探索。

  同学们学习完了“试一试”,此时同学们对轴对称图形已经有了不少的认识,这时,就需要一些习题和游戏来巩固前面所学的知识,我安排了“找一找”、“做一做”、“猜一猜”三个环节,“找一找”就是课本中的“想想做做”第一题、第五题和第六题,主要是让同学们来判断哪些图形是轴对称图形,这两道题主要是为了让同学们进一步的巩固对轴对称图形的认识,能准确地判断出一个图形是不是轴对称图形。“做一做”就是课本中的例题2,让同学们自己动手来制作出轴对称图形,给了同学们自我表现、自我创造的空间,有利于培养同学们积极的学习态度和学数学的亲切感,也有利于培养同学们对美的感受能力。“猜一猜” 是在给出轴对称图形的一半的基础上,让同学们猜出这个图形的形状。在这一题上是由简到难,层层递进。这既能调动同学们的积极性,又能使同学们进一步加深对轴对称图形以及对称轴的认识。

  最后,我安排了一个“欣赏图片,情感体验”的环节,用课件展示出一系列美丽的轴对称图形,让同学们充分地享受这些美丽的轴对称图形带来的视觉上的冲击,感受美、欣赏美。在这节课的最后,我用一个轴对称的汉字——“美”来进行总结,并将课题补充完整,美丽的轴对称图形。

  全课设计,力求做到符合同学们的认知特点,想方设法创设生动活泼的教学情境,使同学们始终处于好奇、好学的学习情绪中,让每一位同学们都学有所得,都体会到成功的喜悦。