任意角的三角函数教案

时间:2022-10-15 22:28:34 教案 我要投稿
  • 相关推荐

任意角的三角函数教案

  作为一位杰出的老师,总归要编写教案,编写教案有利于我们科学、合理地支配课堂时间。快来参考教案是怎么写的吧!下面是小编为大家收集的任意角的三角函数教案,希望对大家有所帮助。

任意角的三角函数教案

任意角的三角函数教案1

  教学目的:

  知识目标:1.理解三角函数定义. 三角函数的定义域,三角函数线.

  2.理解握各种三角函数在各象限内的符号.?

  3.理解终边相同的角的同一三角函数值相等.

  能力目标:

  1.掌握三角函数定义. 三角函数的定义域,三角函数线.

  2.掌握各种三角函数在各象限内的符号.?

  3.掌握终边相同的角的同一三角函数值相等.

  授课类型:复习课

  教学模式:讲练结合

  教 具:多媒体、实物投影仪

  教学过程:

  一、复习引入:

  1、三角函数定义. 三角函数的定义域,三角函数线,各种三角函数在各象限内的符号.诱导公式第一组.

  2.确定下列各式的符号

  (1)sin100°cs240° (2)sin5+tan5

  3. .x取什么值时, 有意义?

  4.若三角形的两内角,满足sincs 0,则此三角形必为……( )

  A锐角三角形 B钝角三角形 C直角三角形 D以上三种情况都可能

  5.若是第三象限角,则下列各式中不成立的是………………( )

  A:sin+cs 0 B:tansin 0

  C:csct 0 D:ctcsc 0

  6.已知是第三象限角且,问是第几象限角?

  二、讲解新课:

  1、求下列函数的定义域:

  (1) ; (2)

  2、已知 ,则为第几象限角?

  3、(1) 若θ在第四象限,试判断sin(csθ)cs(sinθ)的'符号;

  (2)若tan(csθ)ct(sinθ)>0,试指出θ所在的象限,并用图形表示出 的取值范围.

  4、求证角θ为第三象限角的充分必要条件是

  证明:必要性:∵θ是第三象限角,?

  ∴

  充分性:∵sinθ<0,

  ∴θ是第三或第四象限角或终边在y轴的非正半轴上

  ∵tanθ>0,∴θ是第一或第三象限角.?

  ∵sinθ<0,tanθ>0都成立.?

  ∴θ为第三象限角.?

  5 求值:sin(-1320°)cs1110°+cs(-1020°)sin750°+tan495°.

  三、巩固与练习

  1 求函数 的值域

  2 设是第二象限的角,且 的范围.

  四、小结:

  五、课后作业:

  1、利用单位圆中的三角函数线,确定下列各角的取值范围:

  (1) sinα

  2、角α的终边上的点P与A(a,b)关于x轴对称 ,角β的终边上的点Q与A关于直线=x对称.求sinαescβ+tanαctβ+secαcscβ的值.

任意角的三角函数教案2

  一、 教学目标

  1、掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义。

  2、经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程、 领悟直角坐标系的工具功能,丰富数形结合的经验。

  3、培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观。

  4、培养学生求真务实、实事求是的科学态度。

  二、 重点、难点、关键

  重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法。

  难点:把三角函数理解为以实数为自变量的函数。

  关键:如何想到建立直角坐标系;六个比值的确定性( α确定,比值也随之确定)与依赖性(比值随着α的变化而变化)。

  三、 教学理念和方法

  教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。

  根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、讲练结合”的方法组织教学。

  四、 教学过程

  [执教线索:

  回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)——问题情境:能推广到任意角吗?——它山之石:建立直角坐标系(为何?)——优化认知:用直角坐标系研究锐角三角函数——探索发展:对任意角研究六个比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)——例题与练习回顾小结——布置作业]

  (一)复习引入、回想再认

  开门见山,面对全体学生提问:

  在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢?

  探索任意角的三角函数(板书课题),请同学们回想,再明确一下:

  (情景1)什么叫函数?或者说函数是怎样定义的?

  让学生回想后再点名回答,投影显示规范的`定义,教师根据回答情况进行修正、强调:

  传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域、

  现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数 f(x)和它对应,那么就称映射?:A→B为从集合A到集合B的一个函数,记作:y= f(x),x∈A ,其中x叫自变量,自变量x的取值范围A叫做函数的定义域。

任意角的三角函数教案3

  【教学目标:】

  1.通过对初中锐角三角函数定义的回忆,掌握任意角三角函数的定义法,并掌握用单位圆中的有向线段表示三角函数值.

  2.掌握已知角 终边上一点坐标,求四个三角函数值.(即给角求值问题)

  【教学重点:】

  任意角的三角函数的定义.

  【教学难点:】

  任意角的三角函数的定义,正弦、余弦、正切这三种三角函数的几何表示.

  【教学用具:】

  直尺、圆规、投影仪.

  【教学步骤:】

  1.设置情境

  角的范围已经推广,那么对任一角 是否也能像锐角一样定义其四种三角函数呢?本节课就来讨论这一问题.

  2.探索研究

  (1)复习回忆锐角三角函数

  我们已经学习过锐角三角函数,知道它们都是以锐角 为自变量,以比值为函数值,定义了角 的正弦、余弦、正切、余切的三角函数,本节课我们研究当角 是一个任意角时,其三角函数的定义及其几何表示.

  (2)任意角的三角函数定义

  如图1,设 是任意角, 的终边上任意一点 的坐标是 ,当角 在第一、二、三、四象限时的情形,它与原点的距离为 ,则 .

  定义:①比值 叫做 的正弦,记作 ,即 .

  ②比值 叫做 的余弦,记作 ,即 .

  图1

  ③比值 叫做 的正切,记作 ,即 .

  同时提供显示任意角的三角函数所在象限的课件

  提问:对于确定的角 ,这三个比值的大小和 点在角 的终边上的位置是否有关呢?

  利用三角形相似的知识,可以得出对于角 ,这三个比值的大小与 点在角 的终边上的位置无关,只与角 的大小有关.

  请同学们观察当 时, 的终边在 轴上,此时终边上任一点 的横坐标 都等于0,所以 无意义,除此之外,对于确定的角 ,上面三个比值都是惟一确定的.把上面定义中三个比的前项、后项交换,那么得到另外三个定义.

  ④比值 叫做 的余切,记作 ,则 .

  ⑤比值 叫做 的正割,记作 ,则 .

  ⑥比值 叫做 的余割,记作 ,则 .

  可以看出:当 时, 的终边在 轴上,这时 的纵坐标 都等于0,所以 与 的值不存在,当 时, 的'值不存在,除此之外,对于确定的角 ,比值 , , 分别是一个确定的实数,所以我们把正弦、余弦,正切、余切,正割及余割都看成是以角为自变量,以比值为函数值的函数,以上六种函数统称三角函数.

  (3)三角函数是以实数为自变量的函数

  对于确定的角 ,如图2所示, , , 分别对应的比值各是一个确定的实数,因此,正弦,余弦,正切分别可看成从一个角的集合到一个比值的集合的映射,它们都是以角为自变量,以比值为函数值的函数,当采用弧度制来度量角时,每一个确定的角有惟一确定的弧度数,这是一个实数,所以这几种三角函数也都可以看成是以实数为自变量,以比值为函数值的函数.

  即:实数角(其弧度数等于这个实数)三角函数值(实数)

  (4)三角函数的一种几何表示

  利用单位圆有关的有向线段,作出正弦线,余弦线,正切线,如下图3.

  图3

  设任意角 的顶点在原点 ,始边与 轴的非负半轴重合,终边与单位圆相交于点 ,过 作 轴的垂线,垂足为 ;过点 作单位圆的切线,这条切线必然平行于轴,设它与角 的终边(当 为第一、四象限时)或其反向延长线(当 为第二、三象限时)相交于 ,当角 的终边不在坐标轴上时,我们把 , 都看成带有方向的线段,这种带方向的线段叫有向线段.由正弦、余弦、正切函数的定义有:

  这几条与单位圆有关的有向线段 叫做角 的正弦线、余弦线、正切线.当角 的终边在 轴上时,正弦线、正切线分别变成一个点;当角 的终边在 轴上时,余弦线变成一个点,正切线不存在.

  (5)例题讲评