- 相关推荐
《小数的性质》教学反思
作为一名人民教师,我们的工作之一就是课堂教学,对学到的教学新方法,我们可以记录在教学反思中,教学反思应该怎么写呢?以下是小编帮大家整理的《小数的性质》教学反思,欢迎阅读,希望大家能够喜欢。
《小数的性质》教学反思1
小数的基本性质是在学生学习了小数的组成、小数的大小比较等知识后学习的,学生对于像0.4=0.40等知识有一定的认识,但是为什么会这样,就理解得不是很透彻,所以在这节课的学习中,主要是让学生从已有的知识出发,学习本节课内容,主要如下:
一、让学生经历学习过程。
小学数学教学要让学生充分经历知识形成的过程,引领学生自主学习,合作探究,并让学生在学习过程中体验数学思想、数学方法和解决问题的策略,启迪学生的智慧,培养学生终身学习的能力。本节课教学中,我更多地关注学生经历和体验学习的过程,引导学生沿着猜想、验证、总结、应用去探索、去发现、去创造。
首先,引领学生从生活中提取数学素材,提出0.3=0.30的猜想,然后,以学习小组为单位,从不同角度去验证猜想。学生从表示的具体钱数;借助方格图,从他们所表示的意义和阴影部分大小;利用数位顺序表等多个角度去验证猜想,总结出小数的性质,然后再把性质运用到生活之中。在整个的学习过程中,教师充分相信学生,放手让学生自己去发现、去总结,学生的积极性和主动性高,思维活跃,课堂气氛融洽,真正做到了师生之间的平等对话和交流。
二、关注生成,让教学真实有效。
课堂教学中的生成,往往能真实地反映出学生当下的思维状态,学生认知的起点,学生的困惑等等。教师要充分关注生成,并合理引导学生的生成,课堂教学才能更加真实有效。在本节课教学中,我引导学生涂色表示0.5、0.50和0.05这三个小数,然后再比较0.5和0.50、0.5和0.05的大小。让学生发现,从0.5到0.50小数的末尾添上了一个0,小数的大小不变。但是,从0.5到0.05小数的中间添上了一个0,大小就变了。这是因为5所在的数位就变了,表示的意义变了,小数的.大小就变了。这样,学生才真正体会到在小数性质中,末尾这个词重要性。
三、深刻反思,还有很多不足。
1、教师围绕小数的性质,提出诸多细小的问题,学生在这些问题的牵引下被动地回答,被动地接受。
2、本节课中教师还是讲得多了一点,对于学生存在的问题处理得急了一些。因此,在今后的教学中,尽量多给学生一些时间,让他们充分发表自己的意见,大胆的说出自己的想法,让数学课堂活起来。
《小数的性质》教学反思2
学习《小数的意义和性质》时,我先让学生自学,然后交流自学收获与自学中遇到的问题,然后寻找生活中的小数,最后用算珠认识数位顺序表。
在认识数位顺序表时,我先在黑板上画出整数部分的数位顺序,并用算珠表示135,然后提了一个问题:“小数部分能不能用算珠表示出来呢?比如135.3?”这时孩子们开始思考,有的孩子斩钉截铁地说:“不能!”昊罡想了很久,疑惑地说:“肯定不能啊,我们又不能像正方体那样把算珠平均分成十份……”这时我没有做声,只是静静地等待着,让他们思考。还是没有孩子想出办法,于是我换了种思路,问:“如果现在我要用算珠表示4135,该怎样表示呢?”有的`孩子开始有想法,但是一时还表达不出来。这时我要求他们动手试一试,讨论一下。经过小组讨论,有的孩子提出来了:“高位不够了可以往左边加,小数部分不够了可不可以在右边加上算珠呢?”这个提议得到了同学们的响应,并且自己动手试试,很快就热烈起来:“我知道了,在个位的后面再添上一位!”顺势我们就开始了小数部分数位的学习。
我发现用算珠来认识小数部分的数位顺序,孩子们掌握得比较快,兴趣也比较浓。
《小数的性质》教学反思3
在教学时,我首先通过联系学生的生活实际。出示一瓶饮料:甲商店标价为3.00元,乙商店标价为3元,哪家商店便宜。得出3.00元=3元。让学生初步感受到生活中存在着小数的性质。接着通过观察米尺,引导学生得出0.1=0.10=0.100。让学生从左往右看,是什么情况?再从右往左看,是什么情况?你有没有发现了什么?引导学生得出:小数的末尾多一个“0”、两个“0”,或小数的末尾少一个“0”、两个“0”,他们的大小仍旧相等。接着让学生举例,象这样关系的等式还有吗?在学生举的例子中选其中一个加于验证(0.2=0.20)。我先让学生同桌商量一下用什么方法验证,然后动手操作。在操作中让学生再次理解小数的性质。
在引导学生归纳小数的性质时,生1:小数中添上“0”或者去掉“0”,小数的大小不变。马上有学生不同意,并举例如果是0.02与0.2就不相等。学生在自主评价中感悟到“小数”“末尾”等关键词语的深刻含义,从中体味到数学的严谨和缜密。在这堂课中,设计了两次实践活动,让学生进行操作、讨论、验证、想象。让合作探究性的学习贯穿于活动的始终。在实践材料的上,让学生根据已有的.知识经验和能力,自主选择适合自己动手实践和探究的验证材料,这样有利于学生知识的主动构建,更有利于学生探索精神的培养。学生在静态和动态中主动经历着“做数学”和“研究数学”的真实过程,每一次小小的发现都表达着他们对数学学习个性化的体悟与创造,每一次小小的补充,都见证着他们数学经验的蕴育和理解能力提升。
但通过深刻反思,还有很多不足:
1、第一次实践活动的设计,教师围绕小数的性质,提出诸多细小的问题,学生在这些问题的牵引下被动地回答,被动地教授。
2、第二次实践活动的设计,组织验证0.2=0.20,我先让学生同桌商量一下用什么方法验证,然后动手操作。但有的同桌根本商量不出方法,也没办法进行验证。这一点我在备课时,太理想化,以为通过同桌商量应该没什么问题。如果改为你想用什么方法加以验证,说给大家听听,然后再动手操作,效果肯定会更好。所以这一个环节并没有收到预期的效果。
3、本节课中教师还是讲得多了一点,对于学生存在的问题处理得急了一些,例在学生第二次验证时,再多给学生一些时间,或许每个同桌,都有自己的办法加以验证。因此,在今后的教学中,尽量多给学生一些时间,让他们充分发表自己的意见,大胆的说出自己的想法,让数学课堂活起来。
《小数的性质》教学反思4
一.教学内容:
第34~35页的例5、例6及相应的“试一试”、“练一练”,练习六第1~5题
二.教材解读:
本课结合现实情境,通过引导学生自主观察、比较和归纳,探索小数的性质。例5先通过两个小朋友交流铅笔和橡皮单价的情境,引起学生进行比较的需要,通过比较,使学生初步感知小数末尾添上0,小数的大小不变。例6结合购物的情境,通过讨论一组食品单价中哪些“0”可以去掉,引导学生在应用小数性质去掉小数末尾的“0”的活动中,学会化简小数,并加深对小数性质的理解。
三.目标预设:
1.使学生经历小数性质的探索过程,理解小数的性质,学会运用小数的性质把一些小数进行化简或改写。
2.培养观察、比较、抽象、概括以及合情推理的能力,发展学生的数感。
3.引导学生感受数学与生活的联系,增强自主探索和合作交流的意识。
四.教学重点、难点:
探索小数的性质。
五.资源利用
学生经验
通过前几节课的学习,学生已经认识了小数的意义,掌握了小数的读写方法、数位顺序及计数单位。在日常生活中已积累了部分有关小数的生活经验,如:会看各种文具、食品的价格等。
教学准备
教学挂图、例6的食品价格牌、小黑板。
六.课程实施
1.引入
我们已经认识了小数,知道小数在生活中有着广泛的应用。
出示例5情境图,提问:看了这幅图,你了解到了哪些信息?想提出哪些问题?
2.探究
教学例5。
刚才有同学提到,这两件文具的单价实际上是相等的,你们同意他的看法吗?
照你们的想法,可以用等号把0.3和0.30这两个小数连接起来(板书:0.3=0.30),不过这只是我们的猜想。
进一步启发:谁能想办法解释0.3和0.30为什么相等吗?
学生独立思考后,把想法和同桌相互交流。
学生活动后再组织全班交流,并引导学生分别从钱数的多少和每个小数所含计数单位的个数进行解释。
教学例5后“试一试”。
小黑板出示一把有刻度的学生尺,提问:你能在直尺上分别找出100毫米、10厘米、1分米的位置吗?知道他们分别是几分之几米吗?写成小数又分别是多少呢?
解决上述问题后,追问学生:你能比较0.100米、0.10米、0.1米的大小吗?说一说你的理由。
根据学生的回答,板书:0.100米=0.10米=0.1米。
引导学生进一步分析:能否用其他的方法说明0.1=0.10=0.100?
总结和归纳。
谈话:通过上面的两个例子,你发现了什么?把你的想法和小组里同学说一说。
全班交流:提问:你发现了什么规律?
教师小结:小数的末尾添上0或去掉0,小数的大小不变。这就是小数的性质。(板书课题:小数的性质)
我当小裁判:
①小数点后面添上0或去掉0,小数的大小不变。()
②小数的末尾添上0或去掉0,小数的大小不变。()
③一个数的末尾添上0或去掉0,这个数的大小不变。()
教学例6
出示例6情境图,提问:小强买了四种食品,这些食品的价钱中,哪些0可以去掉?先在书上填一填。
学生完成书上的填空后,组织交流反馈。
小结:根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。4.00元可以化简成4元,由此得出整数可以看成是小数部分是0的特殊小数。
教学例6后的“试一试”。
出示“试一试”,提问:你能不改变小数的大小,把下面各数改写成三位小数吗?
学生完成后,组织反馈。重点指导把10改写成三位小数的方法。
练一练。
①指导完成“练一练”第1题。学生练习后,结合交流让学生再说一说每组的两个小数是否相等。
②指导完成“练一练”第2题。学生独立练习,交流后提问:两道题中的数,为什么第①题的0.5和0.50相等,而第②题中0.5和0.05不等?你能从其他角度解释一下吗?引导学生从多角度分析,并再次明确小数末尾的0才能去掉。
3.应用
练习六第1题。
先让学生在小组里说一说,再指名口答。
追问:703.0505左边的0为什么不能去掉?
练习六第2题。
练习后追问学生:为什么不能把0.018和0.180连起来?
练习六第4题。
学生练习后,重点讨论:80
是怎样改写成三位小数的?
练习六第5题。
学生练习后,讲解:用“元”作单位表示人民币的'数量时,因为“元”后面还有“角”和“分”,所以通常要用两位小数表示。
4.课堂作业
①练习六第3题。
②在()里填上合适的两位小数。
橡皮毛巾
5角=()元6元6角=()元
直尺牙刷
1元零5分=()元3元2角=()元
七.课后感想:
1.让学生在已有经验的基础上构建和生成新的数学知识
课始直接出示例5情境图,提问:看了这幅图,你了解到了哪些信息?想提出什么问题?只是用简短的提问带出了课本上的情境,展示给学生,没有刻意地去创造多么复杂、多么热闹的情境,因为情境只是为课堂教学服务的一个手段,达到效果就行。尽管这样的开课很朴实,但朴实中不失实效,使学生及时进入另一个“场景”。
0.3元和0.30元相等吗?这个问题学生不难回答,大部分学生都能根据自己已有的知识经验作出肯定的回答。于是我进一步启发:谁能想办法解释0.3和0.30为什么相等吗?学生独立思考后,把想法和同桌相互交流,学生活动后再组织全班交流。大部分学生想到了0.3元是3角,0.30元是30分也是3角,所以0.3元=0.30元;也有学生解释0.3是3个0.1,0.30是30个0.01,30个0.01就是3个0.1,所以0.3元=0.30元;也有学生从小数意义的角度来解释;还有学生更直观了,通过画线段图来解释。学生的已有知识经验被唤醒了,思路打开了,思维活跃了,于是我趁热打铁,让学生比较0.100米、0.10米和0.1米的大小。我们的教学要依据学生的思维特点,尊重学生的个性差异。这个环节的教学设计充分发挥了学生的主体作用,让学生经历了一个完整的探究过程,为学生构建新知搭建了平台。
2.学生越过表象,识别表象后蕴藏的规律
合理猜想,大胆验证是学生自觉思维的体现,但这种直接经验还必须上升为科学的理论,这就需要学生能越过表象,识别表象后蕴藏的规律,这样才能知其然而知其所以然,便于举一反三,解决同类相关问题。于是我及时引导学生归纳总结,学生通过独立思考,小组讨论,全班交流,总结出小数的性质。接着我又设计了我当小裁判这样一个补充练习,再次突出小数末尾的0才能去掉,让学生更好的理解掌握了小数性质,突出了重点,突破了难点。
最后,通过改一改、填一填、涂一涂、划一划、连一连等多样的练习,让学生及时巩固所学知识,调动了学生学习的积极性。
《小数的性质》教学反思5
本单元刚开始的教学效果真的是特别差,学生交来的课后作业错误满篇,平时麻利的对号此刻却再也难以画上去。一节课时间过去了,作业没批两本,自己却感到头昏脑胀,哎,怎么会这样?
说实在的,对这一个单元从思想上我也没有给予足够的重视。心想,小数对学生已经不是初次接触了,他们有一定的基础,学习起来应该没有问题。哪知道,实际上原不是这么回事。本单元看似容易,实则难点一大堆。小数的意义、性质上是很抽象的东西,学生理解起来很困难。学生对概念的了解只停留在表面,问之知道,但运用缺乏灵活性。变换练习题题型,学生马上无所适从。
比如,学生知道:用来表示十分之几、百分之几、千分之几……的数叫做小数。小数的计数单位有0.1、0.01、0.001……每相邻两个计数单位的进率是“10”。
练习题:1.04读作(),表示( )。第二个括号学生几乎都填的是1个一和4个0.01,而少有学生填104个0.01。虽说学生填的不算错,但也说明学生对小数部分的计数单位不像对整数部分几个一、几个十等的理解那么深刻。
又如,学习了小数的性质:小数的末尾添上0或去掉0,小数的大小不变。判断题:2.0与2大小一样,意义相同。()学生判断正确。说明对小数的意义还是没有真正理解。2.0与2大小一样,但计数单位是不一样的。所以意义不同。
生活中的小数出现问题更多。尤其是单位之间的换算,要根据进率来移动小数点的位置,学生不是进率记错了,就是小数点的位置不对,要不就是数位不够补0时,补在了中间。
接连几次作业,效果都很差,这使我不得不静下心来思考:接下来的课我该如何进行?如何找到解决问题的突破口呢?
通过和同事的交流,我们认为,首先要慢下来,给学生消化吸收的时间,不要急于求成。第二,针对问题,一点一点讲清讲透,有针对性地加强专项训练。第三,帮助学生梳理知识,归纳整理,让学生对本单元知识有一个系统的认识,能清楚地知道自己在哪些方面存在问题,找到问题所在。只有这样,才能把问题一个个消灭掉。
后来的几次课,我依计而行。果然作业效果有了很大改观。批改起来也顺畅多了。单元检测在即,我想对本单元的问题再做一个小结,帮助大家突破难点,掌握重点。
1、小数的'意义:
明白不同的数位上计数单位不同。数位不同,计数单位就不同。整数部分的计数单位最小是一,小数部分的计数单位最大是0.1。
2、小数的性质(1):
区别小数的末尾添上0或去掉0不是小数点的后面添上0或去掉0。如果在小数点的后面添0或去0,小数的大小就会改变。如:2.4=2.40,不能写成2.4=2.04
3、小数的性质(2):
小数点位置的移动是和小数的扩大或缩小相联系的。归纳为:
小数点右移一位=小数扩大10倍=小数×10
小数点右移两位=小数扩大100倍=小数×100,……
小数点左移一位=小数缩小10倍=小数÷10
小数点左移两位=小数缩小100倍=小数÷100,……
4、求小数的近似数:
包括两个内容,一个是把较大数改写成用万或亿作单位的小数,改写原则是不能改变原数的大小,所以除了末尾的0可以去掉,其余都要写上。
一个是求小数的近似数。一般会说明保留几位小数(如保留一位小数,或精确到十分位、精确到0.1,精确到十分之一),原则是看保留位的右边一位“四舍五入”。
如:把190070改写成用“万”作单位的数后,再保留两位小数
190070=19.007万≈19.01万
这类题最易出现的错误是小数数字写对了,却忘了添上“万”或“亿”。也有部分同学把改写和求近似数混淆。
5、生活中的小数:
主要涉及小数与复名数的相互改写(也就是换算)。主要有长度单位、重量单位、面积单位、人民币单位的换算。人民币单位的换算学生基本不存在问题。长度单位除了米和千米的进率是1000以外,两相邻单位的进率都是10。两相邻重量单位之间的进率是1000,而两相邻的面积单位之间进率是100。这是解决问题必须熟悉的。然后根据是扩大还是缩小进行小数点的移动即可。如:
2.05吨=( 20xx )千克,扩大1000倍,所以小数点右移三位。
470厘米=( 4.7 )米,缩小100倍,所以小数点左移两位。
3.04米=( 3 )米( 4 )厘米,把其中的0.04米扩大100倍,即小数点右移两位。
4千克70克=( 4.07 )千克,需要把70克缩小1000倍,即小数点左移三位,再与4千克合起来即可。
6平方分米5平方厘米=(6.05 )平方分米,需要把5平方厘米缩小100倍,即小数点左移两位,再与6平方分米合起来即可。
本单元的教学真的是教训难忘,我也希望自己吸取教训,在教学中反思,在反思中总结,在总结中提高。
《小数的性质》教学反思6
1.教学实录
1.1联系实际,提取素材
师:同学们课前进行了调查。现在请大家说说,生活中哪些地方用到了小数?[生答略]
师:老师也调查了几份材料。课件显示下图:
师:这些小数,有些末尾没有0,有些末尾有0,如:南沙群岛海面浪高2.0米,2.0米就是几米?[生答后,教师板书:2.0=2]
师:买橡皮和铅笔盒应各付多少钱?还可以写作多少元?[生答后,教师板书:0.60=0.6、10.50=10.5]
师:刘伟娜的身高和扣球高度还可以写作多少米?[生答后,教师板书:1.90=1.9,3.00=3]
1.2引导启发,提出猜想
师:观察等号左右两边的小数,你能发现小数有什么样的规律吗?请你大胆进行猜想![先留给学生充分的时间独立思考,然后小组内交流]哪个小组的代表愿意来谈谈你们的看法?
小组1:小数末尾带0的,可以省略。
小组2:小数的末尾有没有0都一样。
……
师:大家讨论一下,拿出一个统一意见好吗?
生:小数的末尾有没有0,小数的大小一样。[板书学生的猜想]
1.3验证猜想,形成结论
师:我们的猜想是否正确?是否对所有的小数都适用?还需要用更多的小数来验证。根据你们的猜想,你能举出一些你认为是相等的小数吗?
生:0.8和0.80、0.4和0.400……
师:它们的大小是不是真的相等?还需要进一步验证。请你们用这些材料[见材料A、B]来验证一下。[小组合作验证]
材料材料B
师:谁愿意来说说你验证的结果?
生1:我们先在这个正方形上涂一竖行(图略),表示0.1,在右面的正方形上涂10个小格(图略),表示0.10,它们的阴影部分都是一竖行,一样大,所以0.1=0.10。[其余学生的验证略]。
揭示课题,指导学生看书,对比并修正结论。
1.4应用性质化简、改写
1.4.1小数的化简
(1)教师拿出用折叠卡片做的小数0.600,问:你能说出一个和它相等的小数吗?[生答略]
教师随着学生的回答用卡片拉出0.6000000…00[约有1.5米长],问:大小变了吗?[学生非常惊奇和振奋地说:没变!]如果它末尾的0像神舟六号那样绕地球转77圈,它的大小变吗?[学生异口同声:不变!]也就是说与0.600大小相等的小数有多少个?在这无数个小数中,最简单的是哪一个?[生答后教师揭示:0.600写成0.6,就叫化简。]
(2)[屏幕出示]0.5000、13.040、10.00等数让学生独立化简。
1.4.2小数的改写
(1)学生尝试把6.07、5.60000、5、1.023改写成两位小数。[最后一个数是反例,想进一步强化和突出“末尾”的0]
(2)学生独立完成后,同位互相检查,并交流自己的想法。
1.5学习回顾与小结
师:想一想,我们学习小数的性质经历了哪些过程?你有了哪些收获?[学生回答和教师总结略]
1.6综合练习,巩固应用
(1)你能只动三笔使7=70=700=7000相等吗?
(2)按要求写小数。①所有的0都能去掉。②所有的0都不能去掉。③有的0能去掉,有的0不能去掉。
2.反思和改进
(1)学生在学习小数的意义的时候,已经对生活中小数的应用情况进行了调查。环节1.1虽然密切联系了学生的生活实际,唤起了学生旧的知识经验,但却似乎是以前调查的机械重复,而且对学生而言,似乎少有挑战和研究的必要价值。在提取素材的过程中,学生又是在一问一答中,被动地提取“小数末尾有0的数据信息”。那么,到底组织什么样的活动才能既让学生自己从生活中主动地提炼出研究材料,又能引发学生的思考和探索呢?
改进:让学生在课前直接调查生活中末尾有0的小数,弄清它表示的具体数量,探讨它用别的小数怎么表示,并利用调查的数据尝试发现、猜想小数存在的一些规律,记下自己的问题。在再次的试教中,学生踊跃地交流自己的调查成果,很快形成了大量探索小数性质的素材(如:0.60元=0.6元等)。大多数同学都发现了“小数的末尾有没有0,大小都一样”这一规律,并提出了一些很有价值的问题,如:“既然0.60元=0.6元,写成0.6元不是更简便吗,为什么商店还标成0.60元?”课前活动直接就把学生引入了对“小数为什么存在这种规律”的探索活动,节约了大量的时间。而且,整个交流过程中,学生的积极性很高,一直是活动的主角,人人争先恐后地展示自己的调查和发现,教师几乎插不上口,取得了很好的效果。
(2)教学“小数的性质”的核心任务和难点是引导学生探讨和理解:为什么小数的末尾添上0或去掉0,小数的大小不变?而不是让学生发现这个规律。绝大多数学生通过课前活动自主发现了小数这个特性,恰好也说明了这一点。但是,年会上的教学却为此花费了大量的精力和时间,冲淡了重点,教学定位不当。因此,实录中的.环节1.2应该删除。
“小数的性质”是基于“小数的意义和计数单位”进行学习的,“小数的意义”是学习小数其他知识的最基本的理论依据。实录中,环节1.3虽然让学生应用材料A、B进行合作验证,完成和经历了“验证”这个步骤,但是,学生还只是停留在形象感知的阶段,缺乏严密的理论论证和说明。这在知识探索和科学研究中是不严谨的。因此,如何组织学生从本质上,即根据“小数的意义”,进一步深刻认识和理解小数的性质,同时,为下一步小数知识的学习提供可以类推应用的理解角度和探究方法,才是本节课最该反思、改进和解决的核心问题!
改进:由于学生亲身经历了素材的调查和整理,并进行了初步的探索和思考,即使课前没有发现的同学,也能很容易地领会和认同同学发现的规律:“小数的末尾有没有0,大小都一样。”因此,在学生交流自己的发现后,教师就可以直接抛出这样一个研究性问题:“为什么‘小数的末尾有没有0,小数的大小一样’呢?你能举例进行解释和说明吗?”在学生独立思考和合作交流的基础上,教师再引导学生自己作图理解和验证。例如:0.2表示十分之二(学生借助方格图表示);在它的末尾添上0,就变成了0.20,表示一百分之二十,也就是20个0.01,10个0.01等于1个0.1,所以0.20等于0.2,大小不变。也可以引导学生从计数单位的角度理解:0.2里有2个0.1;0.20里有2个0.1和0个0.01,所以,它的大小还是0.2。然后再让学生自主利用验证材料B,自己从“小数的意义和计数单位”的角度去理解和解释0.4和0.400为什么相等。在这个过程中,教师要让学生充分畅谈自己的想法,充分交流和共享从不同的角度进行的论证和说明。在看书、修正小数的性质后,增加下面的练习题:
0.52中的2在()位表示(),在0.52的末尾添上三个0后,2在()位,表示()。
0.300里有()个()、()个()和()个()。0.3里有()个()。
0.230里有()个()、()和()个(),0.23里有()个()和()个()。
利用这个练习让学生感悟到:小数的末尾添上0或去掉0,虽然整个小数表示的意义发生了变化,但是,原来小数中每个数字表示的意义却没有变化,数位也没有变化,所以它的大小也没有变化。而且这种方法也可以迁移到根据小数点的移动探寻小数大小变化的规律上,一举两得。
对比:在5.700、200、0.580、580……中哪些数末尾的0去掉后,大小不变?为什么?以帮助学生理解和认识到:整数的末尾添上0或去掉0,就改变了原来数中每个数字的数位和表示的意义,它们的大小就会发生变化,所以不改变整数大小的情况下,整数的末尾不能任意添上0或去掉0,以促进对小数性质的进一步理解。
在改写时讨论:为什么把5改写成两位小数,要在5的后面先点上小数点。
让学生理解在5后点上小数点,再添0,5的数位和表示的意义没有发生变化;5.00是由5个1、0个0.1和0个0.01组成,还是5。同时也能进一步沟通小数和整数的联系。窃以为可以作如下引导:百分之几可以写成两位小数,如99/100写为0.99,那么100/100则可写为1.00,即1;再结合百分图形理解5即500/100,可以写作5.00。
通过以上的教学活动,学生能更为深刻地理解“小数的性质”,并进一步巩固了对“小数的意义和计数单位”的认识,较好地突出了本节课的重点。
(3)环节1.4.1在学生理解化简后,我是用课件出示了几个小数,让学生化简,学生是被动地去做。怎样安排才能使学生做得更为积极,更为主动,效果更好呢?
改进:让学生自己随意写几个小数由同位化简,然后互相批改。学生在后来的试教中表现出了很高的练习热情,并产生了新的学习资源:每次都有学生出了像0.03这样的数让同位化简,我便引导学生进行集体研究和辨析,使学生进一步明确只有小数末尾的0才能去掉,同样实现了我设计的反例——改写1.023的教学目的。
3.几点感悟
(1)小学数学教学要基于学生生活,密切联系实际,让学生体验“数学从生活中来”的过程。例如这节课,我让学生自己调查和收集现实生活中末尾有0的小数实例,并在自己搜集的大量材料中尝试发现小数的性质,使学生真正认识到“数学知识的确是从自己的生活中总结出来的”,充分地体会到了数学与现实生活的密切联系,感受到了学习数学的价值和意义。
(2)小学数学教学要突出学习过程的体验和数学思想、数学方法的渗透,注重启发学生的大智慧。这节课,我把“引导学生经历‘数学猜想、验证和应用的过程’,体验探索、发现数学规律的基本策略和方法”作为课前预定的一个重要教学目标。在课堂教学中也努力地突出这一点,教学中更多地关注学习过程的经历和体验,引导学生沿着“实例——猜想——验证——总结——应用”的轨迹去探索、去发现、去创造。在课堂小结时,也重点突出过程和步骤的回顾,力图让学生掌握探索数学规律的基本过程,领悟到探索数学规律的基本方法,长大智、增大慧,提高了学生独立学习和持续发展的能力。
(3)教师在教学中要反复斟酌教学活动和问题的设计,努力使活动的安排和问题的设计既有利于理解重点、突破难点,又能最大限度地突出学生的主体地位,力争实现教与学方式的彻底转变。我这节课对几个环节的改进无不是基于这个思想来做的,就是尽量向学生提供更为充分的自主探究、交流、创造、实验、论证等活动的机会,通过学生的观察分析、独立思考、动手操作、合作交流等方式,自主地构建知识,突出学生的主体地位,体现以学定教的理念。
(4)每一节课都要用一辈子去经营和反思。我在省年会上执教的教学思路是经过省、市两地教研室多次指导、反复修改的结晶。但是,我并没陶醉于年会上的成功,而是又查询了更多的资料,征求和综合了更多专家、同行、编辑老师的意见,进行了冷静、深刻的反思和实验,才真正理解了教学内容,真正明确了教学的重、难点,才有了后来更为理想的设计。我想,教学就应该是这样:要坚持不厌其烦地琢磨和反复地实践,坚持每一节课都用一辈子去经营和反思,以使我们的教学过程更为合理,更为接近小学数学教学的真谛,收到更好的教学效果。
《小数的性质》教学反思7
本节课的教学,是要学生理解和掌握“小数的性质”。在本节课教学过程中,我力争做到“学生会的不教,学生能探讨的不引,学生能发现的不导”。让学生在学习中学会学习,学生能根据教师的引导,积极主动地学习知识,真正还课堂于学生。基本实现了本节课的教学目标。
在教学时,我利用米尺图和正方形图,让学生根据前面学习过的相关知识自行得出相应的数,然后全班交流这些数的关系。由于学生在汇报时说的都非常明白,所以我没有再去做重复的工作,就只做了相应板书。为了让学生把小数的性质用文字概括出来,我引导学生从左向右观察三个小数的变化,概括出小数末尾添上0小数大小不变规律,接着再从右向左观察,概括出小数性质的后半部分:小数末尾去掉0小数大小不变,老师并做相应板书。
为了让学生能更快地把自己总结出来的.规律记住,我让学生读一遍,然后不看黑板试着说一遍,加强孩子的记忆。为了让他们更好的理解小数的性质,我又设计了一个问题,让学生进行辨析:把小数点后的零去掉,不改变小数的大小。通过这个问题,学生能更好的理解小数末尾的含义,为后面的小数性质的应用打下了良好的基础。
总体上说,本堂课教学思路比较清晰,但在教学过程中,我的语言还欠精练,有些语言还是过于啰嗦,在以后的教学中这方面我要努力改正,争取在备课时把自己的语言组织精练,让每一句话都有用,让每一个字都最精彩。
《小数的性质》教学反思8
本节课的教学,重在让学生理解和掌握“小数的性质”。在本节课教学过程中,我力争做到“学生会的不教,学生能探讨的不引,学生能发现的不导”。让学生在学习中学会学习,学生能根据教师的引导,积极主动地学习知识,真正还课堂于学生。基本实现了本节课的教学目标。
在教学时,我借助长度单位提出数学问题:0.1米、0.10米、0.100米相等,为什么?然后让学生根据前面学习过的小数意义的知识独立思考,然后小组合作交流探索出其中的道理。由于学生在汇报时说的都非常明白,所以我认为老师没必要再去做重复的工作,所以就只做了相应板书。为了让学生把小数的性质用文字概括出来,我引导学生从左到右观察三个小数的变化,概括出小数末尾添上0小数大小不变规律,接着再从右向左观察,概括出小数性质的后半部分:小数末尾去掉0小数大小不变,老师并做相应板书。
为了让学生能把自己根据出来的规律记住,我让学生读一遍,然后不看黑板试着说一遍,加强孩子的记忆。为了让他们更好的理解小数的性质,我又设计了一个问题:你觉得小数的这条性质中哪个词最关键?为什么?通过这个问题,学生能更好的理解小数末尾的含义,为一会学习例2小数的应用打下了基础。同时我又让学生根据小数的性质举一个例子,目的也是让学生彻底理解小数性质的.含义。我在小数性质的含义理解上费了很多时间,学生理解的比较透彻,在例2与例3的教学中,我用课件出示习题,只让学生做以简单解释“化简”的含义,便让学生独立解答,从解答过程来看学生学的效果非常好。
课后巩固练习和拓展练习是我精心设计的,从简到难巩固知识,发展学生思维。尤其是最后一道题“只动两笔,在5、50、500之间添上等于号”有个同学经认真思考后是这样做的:在5的后面添一个0,在500后面去掉一个0,这是我课前没有想到的,但我觉得学生这样做也符合题目要求,也是经过了一番动脑,所以表扬了这位同学,这是考查老师课堂随机应变能力,我自认为处理的还算可以。
总体上说,本堂课教学思路比较清晰,但在教学过程中,我的语言还欠精练,课堂上也问了一些无效的数学问题,比如:“你学会了吗?你学的快乐吗?”等等,有些语言还是过于罗嗦,在以后的教学中在这方面要努力改正,争取在备课时把自己的语言组织精练,让每一句话都有用,让每一个字都最精彩。
《小数的性质》教学反思9
“小数的性质”这部分内容教材结合现实情境,通过引导学生自主地观察、比较和归纳,探索小数的性质。例题分两个层次安排的:第一层次通过两个小朋友交流铅笔和橡皮单价的情境,引起学生进行比较的需要,再通过“橡皮和铅笔的单价相等吗?为什么?”的讨论和交流,体会用不同的方法比较铅笔和橡皮的单价,结果都是一样的。 第二层次是让学生借助直尺图自主比较“0.100米、0.10米和0.1米”的大小,它们也是相等的。依据情境图和得到的等式进行观察、比较等活动,感知上述两组等式存在着“小数末尾去掉0或添上,小数的大小不变”的特点,从而归纳概括出小数的性质。
上面是教材上例6的情境图,呈现的是购物情境,通过思考一组食品的价格中哪些“0”可以去掉,理解“化简”的.概念,学会化简小数的方法,进一步加深对小数性质的理解。我在课堂上是这样展开的:⑴学生独立思考,完成书上的填空,交流得到的答案,牛奶2.80元、面包4.00元和合计10.50元小数末尾的0可以去掉。这样一个过程是“小数性质”应用的内化过程,学生们在练习中会应用小数的性质把小数末尾的0去掉;⑵理解“化简”的含义。教师指出像2,80元=2。8元一样,将小数写法简化的过程就是“化简”;⑶验证答案。利用元、角、分这些单位进行验证,例如2.80元是2元8角,2.8元也是2元8角,2.80元和2.8元是相等的,所以2,80元=2.8元;3.05元表示3元05分,假如3.05元中间的0去掉后就成了3元5角,大小不再相等,所以3.05元中间的0不能去掉。利用元、角、分这些单位进行验证,和利用小数的性质化简得到的答案是一致的,从而达到进一步理解小数性质和应用小数性质化简小数的合理性;⑷质疑。“为什么超市的消费单上的钱数都是两位小数,不写简单的小数呢?”教师在本题结束反馈时抛出了这个问题。学生的回答有两种,一种理解为都是两位小数便于超市进行加法计算,另一种是为了价钱精确些。第一种理解无意和小数加减法想吻合,第二种理解初步体会到保留两位小数可以使小数表达得精确些,回答不是到位,通过教师的补充才理解到位,“这里都是两位小数,超市告诉顾客本超市计算钱数时精确到分。”
“独立解决问题”———“理解”化简“的含义”—————“验证答案”————“质疑”这四个小环节,没有遵循常规使用的利用“小数性质”反馈、矫正,增加了“验证”和“质疑”的环节,旨在继续沟通实际生活与小数性质之间的联系,培养小数多角度地分析问题和解决问题,“质疑”环节则明显拓宽了学生的思维,为后续的学习丰富了感性认识,奠定了良好的学习基础。当然,不足之处也有,没有利用“小数性质”反馈、矫正,此处演绎思维培养的资源无意浪费了,且“小数性质”的应用没有得到进一步的强化,会减缓学生技能的形成的进程。
《小数的性质》教学反思10
本课通过引导学生初步理解小数的性质并能运用小数的性质正确的化解小数和改写小数,激发学生的合作意识和探索精神,全课分为两个阶段:
一、发现规律
课一开始,我利用课本《西游记》主题图引出0。1米、0。10米、0。100米这几组数据,请同学们猜一猜,孙悟空为什么笑了同学们通过自主探索发现 0。1米=0。10米=0。100米,从而引出小数的性质:小数的末尾添上"0"或者去掉"0",小,数的大小不变。在这个过程中同学们跃跃欲试,纷纷发表自己的观点,良好的数学情致得意有效的培养。
二、应用规律
第二个环节主要引导学生将所学的性质用于改写小数和化简小数。由于前面对小数的性质的探索是学生自主进行的,因而在应用起规律来同学们也能得心应手。因此我将教学重点放在如何引导学生学会把3改写成三位小数上,经过启发,学生都知道要不改变数的大小,必须在3的各位右下角先点上小数点,再添3个零,课末通过联系生活的.实践课,让学生感受到小数的性质在生活中的广泛应用。
总之,通过本堂课,我们师生共同分享了彼此的见解和成功的快乐,情感溶于快乐之中,知识溶于成功之中。同学们参与的积极性高,学习效果也较好。
《小数的性质》教学反思11
本单元相关学习知识点具体来说,有小数的产生和意义、小数的读法和写法、小数的性质、小数的大小比较、小数点位置移动引起小数大小的变化规律及应用、小数和复名数、求一个小数的近似数。由于知识点多,近一段时间又在进行自主教学的学习,学生的学习情绪不稳定,总体感觉效果不是很好。根据学生作业情况反思其中的原因,概括如下。
本单元掌握较好的知识点: 小数的产生,同学们很容易接受,都知道是由于日常生活和生产的需要而产生了小数。而在小数的性质学习时,首先有的学生对“在小数的末尾添上“0”或去掉“0”,小数的大小不变”不是很理解,但在进行相关练习后,能较好的解决了这一问题。“小数的读法与写法及大小比较”这知识,让学生有效结合整数的.相关知识点进行对照,学生能很好的理解运用。
本单元学习效果不理想的知识:小数点位置移动引起小数大小的变化、小数和复名数的改写、求一个小数的近似数的掌握不理想。特别是小数点位置移动引起小数大小的变化规律及应用,小数点向左、右移动小数如何变化,有一部分学生总是判断不准。让我感觉不理想的知识点还有小数名数的改写,总有一部分学生处理不好,原因是对相互改写“单位之间的进率”弄不清楚,所以就改写不准确,求一个数的近似数,部分学生在改写用亿或用万作单位并保留一位、两位小数是总是出错该题的要求是只改写成用亿作单位得数。
为了让学生尽快掌握小数点位置移动引起小数大小的变化、小数和复名数的改写及求近似数的相关知识,我采用了很多种方法,感觉有的方法还比较有效。
小数点位置移动引起小数大小的变化:比如(1)3.7------37,数变大,点移动一位,就是扩大10倍。10-----0.001,数变小,点移动四位,就是缩小1000倍。(2)把8.4扩大到它的( )倍是84。先观察小数的移动几位,移动一位扩大10倍。看扩大或缩小多少倍,同样是看小数点移动。因为有的学生总想记住向左移扩大、向右移缩小,所以总容易混淆。还有就是让学生数0,比如3.253×100=,100有2个0,就是小数点移动两位。
小数和复名数:要求学生先找进率、写出进率,再确定是乘进率还是除以进率。比如:1208米=( )千米 除以1000,有3个0 所以小数点向左移动3位。÷ 1000
5.02吨=( )千克 乘1000,有3个0 所以小数点向右移动3位。× 1000
学生练习时,我都让学生写成以上形式,感觉效果很好。
求近似数:要看清要求,是求近似数还是是改写成用亿或用万作单位得数。
比如
(1)保留一位小数:8.353 ,该题就是近似数,看十分位的邻居5,要进1,所以是8.4。
(2)改写成用亿作单位得数。408800000,该题的要求是只改写成用亿作单位得数。 408800000=4.088亿。
(3)改写成用亿作单位得数。(保留两位小数)937540000,做该题时,要求学生先改写成用亿作单位得数,再保 留两位小数。937540000=9.3754亿≈9.38亿。
《小数的性质》教学反思12
《小数的性质》是义务教育课程标准实验教科书数学(苏教版)五年级上册中的内容。
小数的性质这节课是在教学小数的产生和意义以及小数的读与写的基础上进行教学的。小数性质的理解和运用是本节课的教学重点。在教学本节内容时,在重点关键处教师改变传统的只注重理性思考,为把感性的经验与理性的思考相结合的形式进行教学。从而突破对于小数的性质这一难点知识的.理解。同时通过同学们身边生活实际中的看到、遇到的事情很自然的感受和运用小数的性质。从而体会生活中处处有数学,数学在为生活服务。
苏霍姆林斯基说过:在人的心灵深处,总有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者。而在儿童的精神世界中这种需要特别强烈。
在教学时,我没有直接出示例1而是先在黑板上写了三“1”。提问:这三个1中间可以用什么符号连接,创设这样一个问题情境让学生回答。接着,我在第二个1后面添上一个“0”成10,在第三个1后面添上两个“0”成100。再问:现在这三个数还能用等号连接吗?(学生就说不能了。)然后教师引导提问:你能想办法使他们相等吗?这问题情境的创设立即引起了学生们的好奇。这个富有启发性、趣味性、挑战性的问题吸引着学生,引起了他们强烈的探索欲望。使他们情不自禁的注入自己的热情成为学习的主人。他们注意力迅速高度集中,纷纷开动脑筋、个个跃跃欲试。通过大家的回答和教师的引导不知不觉引入新课的学习,自然流畅。
新课标指出:教师要向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能以及数学思想和方法。
教师创设例1这一问题情境,给学生提供充分的教学用具,让学生充分在小组内进行交流、讨论,怎样找出0.1米、0.10米、0.100米的长度。让他们再进行合作分工把他们量、找出来。这一活动教师给足了学生交流、讨论、动手操作的活动空间,让他们自主探索、自主的发现。从而使每一个学生都参与到学习的全过程,让每一个孩子都在探索的活动空间中获得了数学活动的经验。他们每一个人都是亲身去经历和感受了的,活动给他们的体验是很深刻的,同时结合实物的演示进一步感知1分米、10厘米、100毫米实际都是同一段,进一步看出0.1米0.10米0.100米这三个数是相等的。
教师让学生通过横向观察、纵向比较,围绕“变与不变”的特点引导观察、思考、讨论。学生们不仅很快归纳出小数的性质,而且使他们明确了这一知识的形成过程。采取在直观的基础上进行抽象概括,遵循了学生学习的认知规律。较好的实现了由具体到抽象的转化。通过做一做的再次动手操作实践和实物的运用进一步理解和消化小数的性质。
紧密联系生活实际,让学生感到数学在我们的生活,数学就在我们的身边。用学生熟悉的生活中的事例去证实,在我们熟悉的生活实际中去寻找。教学时教师基本放手让学生自主完成本块知识,学生气氛非常活跃、积极性很高。他们充分体验到运用所学知识解决问题成功的快乐。
《小数的性质》教学反思13
1、凭借学生的数学现实,帮助学生解决现实数学中的问题。
小数的基本性质是在学生学习了小数的组成、小数的大小比较、小数与十分之几、百分之几的互化等知识的基础上进行学习的。在学生已有的生活经验中,学生一般都有去商店购物的体验,都了解0.8元与0.80元,1.70=1.7相等。但学生的这种认识相当粗浅,表现在学生不能运用已学的知识去理解为什么0.8=0.80,1.70=1.7。通过本课的教学,要使学生真正理解小数的性质,真正懂得为什么小数的末尾无论添几个0或去几个0,小数的大小不变。本课设计时,并没有采用常用的一步步归纳总结的思路,先归纳小数末尾添一个零,小数的大小不变,再归纳添两个、三个、乃至无数个零的情况。而是一步到位。但在一步到位的时候。舍得化时间,整整用了两大块时间,分别在验证猜测与归纳总结时,让学生充分地发表自己的观点,在生生、师生互动中实现对小数性质的掌握。同时,学生已有的数学现实随着课堂教学的不断深入而呈现不断变化,在这样一个动态过程中,教者通过不断创设一个个新的问题情景,不断激起学生一个个新的认知冲突,使学生原有的数学现实不断地被激活,学生不断地体验着发现、创造。生活中处处有数学、处处有学问油然而生。
2、学生真正成为规律的探索者、发现者。小数基本性质的归纳,小数基本性质的运用,教师充分地让学生自己去探索、去发现。教师既没有被学生已知0.8=0.80的现象所迷惑;而轻易放过让学生作进一步探究的机会;同时又充分地相信学生、放手让学生去探索、去发现,每一次都是学生自己讨论,自己发现、自己总结、自己归纳,一层一层不断地深入,不断地完善。正如教师所说:虽然字写得稚嫩了些,但毕竟是学生自己的发现。教师敢大胆打破书上的框框,让学生自己写自己的发现、自豪地读自己的发现、自豪地用自己的发现去解决问题,这些无疑都将对学生的终生有用。
3、不但使学生学到知识,同时使学生学到做学问的方法。
本课教师在设计时,紧紧围绕这样一条思路:一个规律的.得出,先要猜测,在猜测的基础上进行验证,在验证的基础上观察,归纳。规律的得出,不求一下子十分准确,在不断发现中逐步加以完善,逐步加以提升。由于受学生思维的限制,小学里学习的性质、定理一般运用不完全归纳的思想进行推理总结。怎样在性质、定理归纳推理的过程中,正确地运用这种思想,可能比具体的推理过程更有价值,因为这里有做学问的态度、做学问的方法。本课在教学时比较好地把握了这一点,先让学生根据已有的0.8=0.80、1.7=1.70进行大胆的猜测,在猜测后强调猜测的结果是否一定成立,必须用所学的知识加以验证,验证时样本的抽取要尽量随机。在验证的基础上观察,归纳,提升,在归纳过程中允许学生理解层次上的有所差异,在不断发现中逐步完善。
《小数的性质》教学反思14
本节课是网课课内知识的第一个单元整理与复习,课时跨度三周,主要知识有:小数的意义、读写法、小数的性质、大小比较、小数点的移动规律、小数与单位换算、小数的近似数和小数改写等等,对一部分学习困难的学生来说对前两周的知识会有所遗忘,因此本节课的重点是要带领学生回忆起本单元的知识点,并对知识有一个系统性的整理。而传统意义上的整理复习课一般选取学生课前整理,上课师生、生生互动补充的模式,或者学生本单元的错题重现,重点讲解的模式,学生能够在自我整理的基础上,与学习伙伴们交流沟通,充分在课堂上展现自己,成为课堂的主体。那么如何在网课教学模式下,既能让学生充分展现自己又能更好地达成课堂目标呢?
一开始我还是选择让学生自主整理,再在授课时逐步呈现知识点,将重点知识融于练习中,进行着重的讲解。试讲一次后,发现这种设计显得枯燥乏味,而且不知道学生自主整理的效果是怎么样的,无法准确掌握学生学情是教学的致命问题。这样的教学设计,只能浮于表面地将知识点过一遍,无法让学生形成深刻印象,且知识点之间的过渡十分生硬,模式甚至有点像练习课。
在查阅更多资料,以及向前辈们请教之后,我醍醐灌顶:我需要一个将所有知识点都能串连的一个素材,以此作为导线引导学生自主回忆、整理、复习并总结相关知识点。因此我选取了用几张数字卡片写数作为导入,将学生能写出的数作为后面复习的材料,达到教学素材取之于课堂用之于课堂的目的。课堂总结时引导学生回忆复习整理的步骤,利用思维导图发散性、系统性地整理知识,建构学生个人的知识体系。一节课下来,相信学生对本单元的知识都能有更深刻的印象。
但是教学之后我还是发现了一些问题:一是因为本单元的知识点比较多,在有限的时间内将所有知识点进行梳理,重难点知识的.突出还是不够明显。比如在学生的作业反馈中还是发现有一部分学生对小数与单位换算掌握的很不熟练,有些对单位间的进率不熟悉,有些把高级单位和低级单位之间的转化乘除进率弄混。在之后的练习中我带领学生着重复习单位换算,另外建议学生将乘除进率写在题目旁边,再去移动小数点。二是网课的模式还是影响了一部分学生在课堂的主体地位,在教学设计中教师的引导较多,学生自主的空间比较少。三是练习的设置针对了一般学生,没有进行拔高和拓展,学生失去了一些思考的空间,没有很好地锻炼他们的思维能力。
经过本节课的设计、实践与反思,我对复习课有了新的认识,我会在今后的教学中不断吸取教训,积累教学经验,总结教学方法,让复习课上的更有质量,更适合学生学习。
《小数的性质》教学反思15
“小数的性质”这部分内容教材结合现实情境,通过引导学生自主地观察、比较和归纳,探索小数的性质。例题分两个层次安排的:第一层次通过两个小朋友交流铅笔和橡皮单价的情境,引起学生进行比较的需要,再通过“橡皮和铅笔的单价相等吗?为什么?”的讨论和交流,体会用不同的方法比较铅笔和橡皮的单价,结果都是一样的。 第二层次是让学生借助直尺图自主比较“0.100米、0.10米和0.1米”的大小,它们也是相等的`。依据情境图和得到的等式进行观察、比较等活动,感知上述两组等式存在着“小数末尾去掉0或添上,小数的大小不变”的特点,从而归纳概括出小数的性质。
上面是教材上例6的情境图,呈现的是购物情境,通过思考一组食品的价格中哪些“0”可以去掉,理解“化简”的概念,学会化简小数的方法,进一步加深对小数性质的理解。我在课堂上是这样展开的:
⑴学生独立思考,完成书上的填空,交流得到的答案,牛奶2.80元、面包4.00元和合计10.50元小数末尾的0可以去掉。这样一个过程是“小数性质”应用的内化过程,学生们在练习中会应用小数的性质把小数末尾的0去掉;
⑵理解“化简”的含义。教师指出像2,80元=2.8元一样,将小数写法简化的过程就是“化简”;
⑶验证答案。利用元、角、分这些单位进行验证,例如2.80元是2元8角,2.8元也是2元8角,2.80元和2.8元是相等的,所以2,80元=2.8元;3.05元表示3元05分,假如3.05元中间的0去掉后就成了3元5角,大小不再相等,所以3.05元中间的0不能去掉。利用元、角、分这些单位进行验证,和利用小数的性质化简得到的答案是一致的,从而达到进一步理解小数性质和应用小数性质化简小数的合理性;
⑷质疑。“为什么超市的消费单上的钱数都是两位小数,不写简单的小数呢?”教师在本题结束反馈时抛出了这个问题。学生的回答有两种,一种理解为都是两位小数便于超市进行加法计算,另一种是为了价钱精确些。第一种理解无意和小数加减法想吻合,第二种理解初步体会到保留两位小数可以使小数表达得精确些,回答不是到位,通过教师的补充才理解到位,“这里都是两位小数,超市告诉顾客本超市计算钱数时精确到分。”
“独立解决问题”---“理解“化简”的含义”-----“验证答案”----“质疑”这四个小环节,没有遵循常规使用的利用“小数性质”反馈、矫正,增加了“验证”和“质疑”的环节,旨在继续沟通实际生活与小数性质之间的联系,培养小数多角度地分析问题和解决问题,“质疑”环节则明显拓宽了学生的思维,为后续的学习丰富了感性认识,奠定了良好的学习基础。当然,不足之处也有,没有利用“小数性质”反馈、矫正,此处演绎思维培养的资源无意浪费了,且“小数性质”的应用没有得到进一步的强化,会减缓学生技能的形成的进程。